Reasoning of Tree Cross Sections Oval Shaping while Growing with an Inclination
DOI:
https://doi.org/10.37482/0536-1036-2020-5-166-175Keywords:
wood ultimate strength, statistical bending, bending moment, timber structures, stress strain behavior, primary stress, core shiftingAbstract
It is known that it is possible to determine the age of a tree and the conditions for its growth by some external features. These features include the number of annual layers on the tree trunk cross section, the correct geometric shape of these layers. The stem taper indicates where this tree grew: in an overstocked stand or in open areas. The oval shape of the cross sections of the trunk is common to the trees with irregular crown or grown inclined to the horizon. A powerful external action of a prevailing wind load influences on the cross sections shaping of tree trunks. Trunk, crown and corresponding cross-breaking strength and compression resistance along the wood fibers of a tree are formed in response to all external influences during its growth. The collaborative effect of these factors is the size, shape and location of the core and sapwood zones in the tree trunks, on which the strength, density, and location of wood defects are dependent, and which affect the quality of wood products in-service. The authors chose the initial stress formed during the tree growth as a uniform criterion for assessing the influence of the natural features of wood on the quality and strength of wooden building structures. The value of which can be fairly estimated by the size and shape of the core and sapwood zones of the tree trunks cross sections. The size and shape of these zones can be measured by scanning. The log sawing pattern should be selected using appropriate computer software that allow obtaining the high-quality sawn timber for the construction purposes. The research purpose is to develop a method for determining the size and shape of the core and sapwood zones of the tree trunk sections that have a natural curvature and grow vertically or with an inclination to the horizon; and what is more, to substantiate the connection between the shape and size of the tree trunk oval sections with the initial stresses developing during growth and the wood strength under tension, compression along the fibers and static bending.
For citation: Glukhikh V.N., Chernykh A.G. Reasoning of Tree Cross Sections Oval Shaping while Growing with an Inclination. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 5, pp. 166–175. DOI: 10.37482/0536-1036-2020-5-166-175
Downloads
References
Белов С.В. Ветер – главный фактор, определяющий форму стволов деревьев и их устойчивость // Ботан. журн. СССР. 1934. Т. 13, № 3. С. 3–24. [Belov S.V. Wind is the Main Factor Determining the Shape of Tree Trunks and Their Stability. Botanicheskii Zhurnal, 1934, vol. 13, no. 3, pp. 3–24].
Глухих В.Н., Акопян А.Л. Начальные напряжения в древесине: моногр. СПб.: СПбГАСУ, 2016. 118 с. [Glukhikh V.N., Akopyan A.L. Initial Stresses in Timber: Monograph. Saint Petersburg, SPbGASU Publ., 2016. 118 p.].
Глухих В.Н., Охлопкова А.Ю. Формирование кармашков в стволах деревьев лиственницы даурской // Изв. вузов. Лесн. журн. 2017. № 5. С. 35–52. [Glukhikh V.N., Okhlopkova A.Yu. Resin Pocket Formation in Tree Stems of Dahurian Larch. Lesnoy Zhurnal [Russian Forestry Journal], 2017, no. 5, pp. 35–52]. DOI: 10.17238/issn0536- 1036.2017.5.35, URL: http://lesnoizhurnal.ru/upload/iblock/212/Glukhikh2.pdf
Глухих В.Н., Охлопкова А.Ю. Определение изгибающего момента и прогиба в сечениях пиломатериалов лиственницы даурской от действия начальных напряжений // Изв. вузов. Лесн. журн. 2018. № 1. С. 89–98. [Glukhikh V.N., Okhlopkova A.Yu. Determination of Bending Moment and Deflection in Lumber Cross-Sections of Dahurian Larch from the Action of Initial Stresses. Lesnoy Zhurnal [Russian Forestry Journal], 2018, no. 1, pp. 89–98]. DOI: 10.17238/issn0536-1036.2018.1.89, URL: http://lesnoizhurnal.ru/upload/iblock/051/89_98.pdf
Глухих В.Н., Акопян А.Л., Охлопкова А.Ю. Природные особенности древесины: моногр. СПб.: Политех, 2018. 392 с. [Glukhikh V.N., Akopyan A.L., Okhlopkova A.Yu. Natural Features of Wood: Monograph. Saint Petersburg, Polytech Publ., 2018. 392 p.].
Иванов Л.А. О влиянии ветра на рост дерева // Ботан. журн. СССР. 1934. Т. 13, № 3. С. 37–44. [Ivanov L.A. On the Effect of Wind on Tree Growth. Botanicheskii Zhurnal, 1934, vol. 13, no. 3, pp. 37–44].
Кузнецов А.И. Внутренние напряжения в древесине. М.; Л.: Гослесбумиздат, 1950. 59 с. [Kuznetsov A.I. Internal Stresses in Timber. Moscow, Goslesbumizdat Publ., 1950. 59 p.].
Охлопкова А.Ю. Исследование покоробленности пиломатериалов лиственницы даурской от действия начальных напряжений и собственного веса // Системы. Методы. Технология. 2018. № 1. С. 17– 21. [Okhlopkova A.Yu. Research of Dahurian Larch Sawmill Warping Cased by of Initial Stresses and its Own Weight. Sistemy. Metody. Tekhnologii. [Systems. Methods. Technologies.], 2018, no. 1, pp. 17–21]. DOI: 10.18324/2077-5415-2018-1-105-109
Раздорский В.Ф. Принципы строения скелета растений // Природа. 1934. № 9. С. 20–29. [Razdorskiy V.F. Principles of the Skeleton Structure of Plants. Priroda, 1934, no. 9, pp. 20–29].
Темнов В.Г. Бионический принцип регулирования параметров напряженнодеформированного состояния конструктивных систем при их проектировании и эксплуатации // Материалы 53-й науч. конф. СПб.: СПбГАСУ, 1996. С. 123–128. [Temnov V.G. The Boinic Principle of Regulating the Parameters of the Stress Strain Behavior of Structural Systems during Their Design and Operation. Proceedings of the 53rd Scientific Conference. Saint Petersburg, SPbGASU Publ., 1996, pp. 123–128].
Alméras T., Clair B. Critical Review on the Mechanisms of Maturation Stress Generation in Trees. Journal of The Royal Society Interface, 2016, vol. 13, iss. 122, art. 20160550. DOI: 10.1098/rsif.2016.0550
Banks C.H. Sawing and Stacking. Timber to Reduce Warp. Timber Technologie, 1966, no. 3, pp. 36–39.
Bonnesoeur V., Constant T., Moulia B., Fournier M. Forest Trees Filter Chronic Wind-Signals to Acclimate to High Winds. New Phytologist, 2016, vol. 210, iss. 3, pp. 850–860. DOI: 10.1111/nph.13836
Cassens D.L., Serrano J.R. Growth Stress in Hardwood Timber. Proceedings of the 14th Central Hardwoods Forest Conference, Wooster, OH, March 16–19, 2004. Wooster, USDA, 2004, pp. 106–115.
Coutand C., Pot G., Badel E. Mechanosensing Is Involved in the Regulation of Autostress Levels in Tension Wood. Trees, 2014, vol. 28, pp. 687–697. DOI: 10.1007/s00468-014-0981-6
Fourcaud T., Blaise F., Lac P., Castéra P., de Reffye P. Numerical Modelling of Shape Regulation and Growth Stresses in Trees. Trees, 2003, vol. 17, pp. 31–39. DOI: 10.1007/s00468-002-0203-5
Kübler H. Studien über Wachstumsspannungen des Holzes–Erste Mitteilung: Die Ursache der Wachstumsspannungen und die Spannungen quer zur Faserrichtung. Holz als Roh- und Werkstoff [European Journal of Wood and Wood Products], 1959, vol. 17, pp. 1–9. DOI: 10.1007/BF02608827
Nicholson J.E. A Rapid Method for Estimating Longitudinal Growth Stresses in Logs. Wood Science and Technology, 1971, vol. 5, iss. 1, pp. 40–48. DOI: 10.1007/BF00363119
Okura S., Ozawa K., Takagaki N. On the Twisting Warp of Wood. Part IV. Twisting Warp of Boards in Relation to Fiber Directions. Mokuzai Gakkaishi, 1963, no. 9(4), pp. 121–124.
Roignant J., Badel É., Leblanc-Fournier N., Brunel-Michac N., Ruelle J., Moulia B., Decourteix M. Feeling Stretched or Compressed? The Multiple Mechanosensitive Responses of Wood Formation to Bending. Annals of Botany, 2018, vol. 121, iss. 6, pp. 1151–1161. DOI: 10.1093/aob/mcx211
Stevens W.C., Mech E. Twist in Sitka Spruce. Timber Trades Journal, 1960, no. 2.