Characteristics of Wood Substance Formation during Growing of Scots Pine Seedlings Using Chemical Markers
DOI:
https://doi.org/10.37482/0536-1036-2022-1-36-48Keywords:
biosynthesis, growing, phenolic compounds, lignification, enzymatic activityAbstract
Currently, seedlings of the main silvicultural species are grown in greenhouses by the technology of ball-rooted planting material production. The process features raise the issue of the resulting planting material sustainability in relation to environmental conditions. Seedling growth and development in multi-rotation growing schemes will be influenced by both greenhouse and hardening site conditions. This makes assessing the planting material readiness for transfer to the open ground an urgent scientific task. Secondary metabolites (end products of biosynthesis) are one of the most suitable indicators for such an assessment from a chemical point of view. This study aims to explore chemical markers of wood substance formation as a criterion for completion of the annual development cycle of seedlings (at summer sowing dates) and their readiness for planting in the open ground. Scots pine is a good model object for the research, since it is a typical representative of coniferous forests, has an extensive range of growth as well as a high adaptive potential. Pine seedlings are usually highly sensitive to environmental conditions in the early stages of development. Physicochemical methods were used for the analysis of the biosynthesis processes of the main wood substance components. The seasonal dynamics of phenolic compounds content in different parts of annual Scots pine seedlings showed that the plants adapt to the temperature changes when they are brought to the hardening site. The adaptation includes a decrease in the content of low-molecular phenolic compounds preventing the development of uncontrolled oxidative processes when plant is exposed to adverse and stressful environmental conditions. It was found that the changes in the content of coniferyl alcohol as a precursor of lignin structures of coniferous wood can serve as a marker of lignification in the studied vegetation process. The content of phenolic compounds (at least 120–140 mg/g of TOC) and the peroxidase activity in needles (0.1–0.3 units of activity) may serve as criteriа for the completion of the annual cycle of seedling formation and the degree of its readiness for planting in the natural environment.
For citation: Gusakova M.A., Bogolitsyn K.G., Krasikova A.A., Selivanova N.V., Khviyuzov S.S., Samsonova N.A. Characteristics of Wood Substance Formation during Growing of Scots Pine Seedlings Using Chemical Markers. Lesnoy Zhurnal [Russian Forestry Journal], 2022, no. 1, pp. 36–48. DOI: 10.37482/0536-1036-2022-1-36-48
Downloads
References
Бессчетнов В.П., Бессчетнова Н.Н., Яханова Е.А., Горелова З.В., Соколова А.А., Кентбаев Е.Ж., Кентбаева Б.А., Шабалина М.В. Развитие ксилемы и лигнификация ее клеток у сеянцев сосны с открытой и закрытой корневой системой // Вестн. НГСХА. 2014. Т. 4. С. 25–35. Besschetnov V.P., Besschetnova N.N., Yakhanova E.A., Gorelova Z.V., Sokolova A.A., Kentbayev E.Zh., Kentbayeva B.A., Shabalina M.V. Xylem Development and Lignification of Its Cells in Bare-Rooted and Ball-Rooted Pine Seedlings. Vestnik Nizhegorodskoy gosudarstvennoy sel’skokhozyaystvennoy akademii, 2014, vol. 4, pр. 25–35.
Бессчетнова Н.Н., Кулькова А.В. Содержание запасных питательных веществ в клетках тканей годичных побегов представителей рода ель (Picea L.) в условиях Нижегородской области // Изв. вузов. Лесн. журн. 2019. № 6. С. 52–61. Besschetnova N.N., Kul’kova A.V. The Content of Reserve Nutrients in the Cells of Annual Shoot Tissues of the Representatives of the Spruce (Picea L.) Genus in Nizhny Novgorod Region. Lesnoy Zhurnal [Russian Forestry Journal], 2019, no. 6, pр. 52–61. DOI: https://doi.org/10.17238/issn0536-1036.2019.6.52
Бобушкина С.В. Интенсивность роста и развития сеянцев сосны с закрытой корневой системой при разных режимах выращивания для лесовосстановления в Архангельской области: дис. … канд. с.-х. наук. Архангельск, 2014. 196 c. Bobushkina S.V. Intensity of Growth and Development of Ball-Rooted Pine Seedlings under Different Regimes of Cultivation for Reforestation in the Arkhangelsk Region: Cand. Agric. Sci. Diss. Arkhangelsk, 2014. 196 p.
Боголицын К.Г., Лунин В.В., Косяков Д.С. и др. Физическая химия лигнина: моногр. М.: Академкнига, 2010. 492 с. Bogolitsyn K.G., Lunin V.V., Kosyakov D.S. et al. Physical Chemistry of Lignin: Monograph. Moscow, Akademkniga Publ., 2010. 492 p.
Жигунов A.B., Маркова И.А. Производство посадочного материала в лесных питомниках Северо-Запада России: практические рекомендации. СПб.: СПбНИИЛХ, 2005. 114 с. Zhigunov А.B., Markova I.A. Production of Planting Material in Forest Nurseries of the North-West of Russia: Practical Recommendations. Saint Petersburg, SPbNIILH Publ., 2005. 114 p.
Маркова И.А. Современные проблемы лесовыращивания (Лесокультурное производство). СПб.: СПбГЛТА, 2008. 156 с. Markova I.A. Current Issues of Forest Cultivation (Forestry Production). Saint Petersburg, SPbGLTA Publ., 2008. 156 p.
Красикова А.А., Боголицын К.Г., Гусакова М.А., Ивахнов А.Д., Хвиюзов С.С., Самсонова Н.А. Анализ фенольных компонентов в сверхкритических экстрактах древесины Juniperus Communis L. методом ВЭЖХ // Сверхкритические флюиды: теория и практика. 2018. Т. 13, № 4. С. 41–49. DOI: https://doi.org/10.34984/SCFTP.2018.13.4.006. Krasikova A.A., Bogolitsyn K.G., Gusakova M.A., Ivakhnov A.D., Khviuzov S.S., Samsonova N.A. Analysis of Phenolic Components in the Supercritical Extracts of the Juniperus communis L. Wood by the Method of HPLC. Sverkhkriticheskiye flyuidy: Teoriya i praktika [Supercritical Fluids: Theory and Practice], 2018, vol. 13, no. 4, pp. 41–49. DOI: https://doi.org/10.1134/S1990793119070169
Тарханов С.Н., Бирюков С.Ю. Морфоструктура и изменчивость биохимических признаков популяции сосны (Pinus sylvestris L.) в стрессовых условиях устья Северной Двины // Сиб. экол. журн. 2014. № 2. С. 319–327. Tarkhanov S.N., Biryukov S.Yu. Morphostructure and Biochemical Parameters of Scots Pine (Pinus sylvestris L.) in the Stressing Environment of North Dvina Estuary Region. Sibirskiy Ekologicheskiy Zhurnal [Contemporary Problems of Ecology], 2014, no. 2, pр. 319–327.
Федотов А.Н., Жигунов А.В. Влияние длины дня на формирование верхушечных почек у однолетних контейнеризированных сеянцев сосны обыкновенной и ели европейской // Изв. СПбЛТА. 2016. Вып. 215. С. 80–91. Fedotov A.N., Zhigunov A.V. The Effect of the Day Length on the Formation of Apical Buds in One-Year-Old Containerized Seedlings of Scots Pine and Norway Spruce. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii [News of the Saint Petersburg State Forest Technical Academy], 2016, iss. 215, pр. 80–91. DOI: https://doi.org/10.21266/2079-4304.2016.215.80-91
Фенольные соединения: фундаментальные и прикладные аспекты / отв. ред. Н.В. Загоскина, Е.Б. Бурлакова. М.: Науч. мир, 2010. 400 с. Phenolic Compounds: Fundamental and Applied Aspects. Ed. by N.V. Zagoskina, E.B. Burlakova. Moscow, Nauchnyy mir Publ., 2010. 400 p.
Шавнин С.А., Юсупов И.А., Марина Н.В., Монтиле А.А., Голиков Д.Ю. Сезонные изменения содержания хлорофиллов и каротиноидов в хвое сосны обыкновенной (Pinus sylvestris L.) в зоне влияния теплового поля газового факела // Физиология растений. 2021. Т. 68, № 3. С. 315–325. DOI: https://doi.org/10.31857/S0015330321020184. Shavnin S.A., Yusupov I.A., Marina N.V., Montile A.A., Golikov D.Yu. Seasonal Changes in Chlorophyll and Carotenoid Content in Needles of Scots Pines (Pinus sylvestris L.) Exposed to the Thermal Field of a Gas Flare. Fiziologiya rastenij [Russian Journal of Plant Physiology], 2021, vol. 68, no. 3, pp. 315–325. DOI: https://doi.org/10.1134/s1021443721020187
Якимов Н.И., Крук Н.К., Юреня А.В. Биометрические показатели и густота однолетних сеянцев сосны и ели в закрытом грунте при разных нормах высева семян // Проблемы лесоведения и лесоводства. Гомель: Ин-т леса НАН Беларуси, 2016. Вып. 76. С. 302–306. Yakimov N.I., Kruk N.K., Yurenya А.V. Biometric Indices and Density of Annual Seedlings of Pine and Spruce in Closed Ground at Different Rates of Seed Sowing. Issues of Forest Science and Forestry. Gomel, Institut lesa NAN Belarusi Publ., 2016, iss. 76, pp. 302–306.
Якимов Н.И., Крук Н.К., Юреня А.В. Агротехника выращивания сеянцев сосны обыкновенной в условиях закрытого грунта // Тр. БГТУ. 2018. Сер. 1: Лесное хоз-во, природопользование и переработка возобновляемых ресурсов. № 1. С. 25–30. Yakimov N.I., Kruk N.K., Yurenya A.V. Agricultural Cultivation of Seedlings of Scots Pine in a Greenhouse. Trudy BGTU. Ser. 1: Lesnoye khozyaystvo, prirodopol’zovaniye i pererabotka vozobnovlyayemykh resursov [Proceedings of BSTU. Series 1: Forestry. Environmental management. Reprocessing of renewable resources], 2018, no. 1, pp. 25–30.
Barnett J.P. Activities that Increase Germination and Establishment of Longleaf Pine Seedlings in Containers. Proceedings: Workshops on Growing Longleaf Pine in Containers–1999 and 2001. General Technical Report. SRS-56. Asheville, NC, USDA, 2002, pp. 18–21.
Barros J., Serk H., Granlund I., Pesquet E. The Cell Biology of Lignification in Higher Plants. Annals of Botany, 2015, vol. 2015, iss. 7, pp. 1053–1074. DOI: https://doi.org/10.1093/aob/mcv046
Bergmeyer H.U. Methods of Enzymatic Analysis. Vol. 1. New York, Academic Press, 1974. 495 p.
Harkin J.M., Obst T.R. Lignification in Trees: Indication of Exclusive Peroxidase Participation. Science, 1973, vol. 180, iss. 4083, pр. 296–298. DOI: https://doi.org/10.1126/science.180.4083.296
Juntunen M.-L., Rikala R. Fertilization Practice in Finnish Forest Nurseries from the Standpoint of Environmental Impact. New Forests, 2001, vol. 21, pp. 141–158. DOI: https://doi.org/10.1023/A:1011837800185
Nilsson U., Louranen J., Kolström T., Örlander G., Puttonen P. Reforestation with Planting in Northern Europe. Scandinavian Journal of Forest Research, 2010, vol. 25, iss. 4, pp. 283–294. DOI: https://doi.org/10.1080/02827581.2010.498384
Ralph J. Hydroxycinnamates in Lignification. Phytochemistry Reviews, 2010, vol. 9, iss. 1, pp. 65–83. DOI: https://doi.org/10.1007/s11101-009-9141-9
Shigeto J., Honjo H., Fujita K., Tsutsumi Y. Generation of Lignin Polymer Models via Dehydrogenative Polymerization of Coniferyl Alcohol and Syringyl Alcohol via Several Plant Peroxidases Involved in Lignification and Analysis of the Resulting DHPs by MALDI-TOF Analysis. Holzforschung, 2018, vol. 72, iss. 4, pp. 267–274. DOI: https://doi.org/10.1515/hf-2017-0125
Taylor E.L., Blazier M., Gordon Holley A. New Pine Planting Strategies for the Western Gulf States. National Proceedings: Forest and Conservation Nursery Associations – 2006. USDA Forest Service Proceedings RMRS-P-50. Fort Collins, CO, USDA, 2007, pp. 104–109.
Vanholme R., Demedts B., Morreel K., Ralph J., Boerjan W. Lignin Biosynthesis and Structure. Plant Physiology, 2010, vol. 153, iss. 3, pр. 895–905. DOI: https://doi.org/10.1104/pp.110.155119
Vogt T. Phenylpropanoid Biosynthesis. Molecular Plant, 2010, vol. 3, iss. 1, pp. 2–20. DOI: https://doi.org/10.1093/mp/ssp106
Waterman P.G., Mole S. Analysis of Phenolic Plant Metabolites. London, Blackwell Scientific Publications, 1994. 238 р.
Weng J.-K., Chapple C. The Origin and Evolution of Lignin Biosynthesis. New Phytologist, 2010, vol. 187, iss. 2, pp. 273–285. DOI: https://doi.org/10.1111/j.1469-8137.2010.03327.x