Changes in Forested Areas of the North-Eastern Region of Azerbaijan Revealed by Satellite Images

Authors

DOI:

https://doi.org/10.37482/0536-1036-2022-1-88-97

Keywords:

satellite images, radiometric calibration, atmospheric correction, normalized difference vegetation index, forest cover, forest loss

Abstract

Among the most valuable natural resources of any country are its forest reserves. They need to be preserved. The need for forest protection also exists in Azerbaijan, where there is less forest per inhabitant than in neighboring countries. The use of modern data acquisition and processing methods as well as geographical information system technologies has reduced research in this area to a set of standard procedures. The article describes the stages of processing satellite images available in the public domain, using the case study of the north-eastern region of Azerbaijan, in order to compile forest cover maps over a number of different years. The Landsat images obtained during the summer seasons in different years from 1987 to 2018 are studied. The images covered the territory of 5 neighboring districts in the north-east of Azerbaijan. Preliminary processing of the images included radiometric calibration and atmospheric correction and was carried out using the ENVI software and the FLAASH module. The article also shows the final processing of images using the ArcGIS program in order to determine the areas covered by forests in different years. The analysis was based on the calculation of the Normalized Difference Vegetation Index (NDVI). The index was calculated for all considered satellite images. Then sections of images with high NDVI values were highlighted, vectorized, and the areas of the resulting polygons were found. Thus, a separate thematic layer is created for each year, showing the area of forest cover that year, i.e. 3 layers in total. The data obtained were summarized in a table, from which a diagram showing the dynamics of the forest area in the region was created. The data also became the basis for a thematic electronic map of forest loss. The continuation of this process has been described.
For citation: Mamedaliyeva V.M. Changes in Forested Areas of the North-Eastern Region of Azerbaijan Revealed by Satellite Images. Lesnoy Zhurnal [Russian Forestry Journal], 2022, no. 1, pp. 88–97. DOI: 10.37482/0536-1036-2022-1-88-97

Downloads

Download data is not yet available.

Author Biography

Valida M. Mamedaliyeva, Institute of Ecology of the Azerbaijan National Aerospace Agency

Candidate of Geography; ResearcherID: AAC-5454-2021

References

Баришполец В.А. Анализ глобальных экологических проблем // Радиоэлектроника. Наносистемы. Информационные технологии. 2011. Т. 3, № 1. С. 79–96. Barishpolets V.A. The Analysis of Global Environmental Problems. RENSIT, 2011, vol. 3, no. 1, pp. 79–96.

Болсуновский М.А., Черепанов А.С. Атмосферная коррекция в ПО ENVI. Модуль FLAASH // Геопрофи. 2006. № 5. С. 22–24. Bolsunovskiy M.A., Cherepanov A.S. Atmospheric Correction Using ENVI Software. FLAASH Module. Geoprofi, 2006, no. 5, pp. 22–24.

Данилова И.В., Рыжкова В.А., Корец М.А. Алгоритм автоматизированного картографирования современного состояния и динамики лесов на основе ГИС // Вест. НГУ. Сер.: Информ. технологии. 2010. Т. 8, вып. 4. С. 15–24. Danilova I.V., Ryzhkova V.A., Korets M.A. A GIS-Aided Algorithm for Mapping the Current Forest State and Dynamics. Vestnik NGU. Ser.: Informatsionnyye tekhnologii [Vestnik NSU. Series: Information Technologies], 2010, vol. 8, iss. 4, pp. 15–24.

Деркачева А.А., Тутубалина О.В. Эффективность атмосферных коррекций гиперспектральных снимков Hyperion в регионах с развитым растительным покровом // Современные проблемы дистанционного зондирования Земли из космоса. 2014. Т. 11, № 4. С. 360–368. Derkacheva A.A., Tutubalina O.V. The Effectiveness of Atmospheric Correction for Hyperion Hyperspectral Images in Regions with Developed Vegetation Cover. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space], 2014, vol. 11, no. 4, pp. 360–368.

Дубинин М. NDVI – теория и практика // GIS-Lab. 2002. Режим доступа: https://gis-lab.info/qa/ndvi.html (дата обращения: 03.06.20). Dubinin M. NDVI – Theory and Practice. GIS-Lab. 2002.

Казаков Э., Семёнов А., Волгушева Н. Обработка и интерпретация данных Landsat 8 (OLI) средствами GRASS GIS 7 // GIS-Lab. 2015. Режим доступа: https://gis-lab.info/qa/grass7-landsat8-processing.html (дата обращения: 19.06.20). Kazakov E., Semenov A., Volgusheva N. Processing and Interpretation of Landsat 8 (OLI) Data by Means of GRASS GIS 7. GIS-Lab. 2015.

Лурье И.К., Косиков А.Г. Дистанционное зондирование и географические информационные системы. Ч. 1. Теория и практика цифровой обработки изображений. М.: Науч. мир, 2003. 166 с. Lur’ye I.K., Kosikov A.G. Remote Sensing and Geographical Information Systems. Part 1. Theory and Practice of Digital Image Processing. Moscow, Nauchnyy mir Publ., 2003. 166 p.

Мерзленко М.Д. Актуальные аспекты искусственного лесовосстановления // Изв. вузов. Лесн. журн. 2017. № 3. C. 22–30. Merzlenko M.D. Relevant Aspects of Artificial Reforestation. Lesnoy Zhurnal [Russian Forestry Journal], 2017, no. 3, pp. 22–30. DOI: https://doi.org/10.17238/issn0536-1036.2017.3.22

Управление горными лесами и водоразделами. Доклад Продовольственной и сельскохозяйственной организации Объединенных Наций. Режим доступа: http://www.fao.org/forestry/36963-0ac84a8f742747df79dfe116b1d72665a.pdf. (дата обращения: 06.03.20). Management of Mountain Forests and Watersheds. Report of the Food and Agriculture Organization of the United Nations.

Черепанов А.С., Дружинина Е.Г. Спектральные свойства растительности и вегетационные индексы // Геоматика. 2009. № 3. С. 28–32. Cherepanov A.S., Druzhinina E.G. Spectral Characteristics of Vegetation and Vegetation Indixes. Geomatika [Geomatics], 2009, no. 3, pp. 28–32.

Чухланцев А.А., Саворский В.П. Задачи дистанционного зондирования лесов при изучении глобальных климатических изменений // Современные проблемы дистанционного зондирования Земли из космоса. 2011. Т. 8, № 2. С. 246–256. Chukhlantsev A.A., Savorskij V.P. Remote Sensing of Forests in Context of Global Change. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space], 2011, vol. 8, no. 2, pp. 246–256.

ArcView GIS для экологов. Российская сеть изучения и охраны пернатых хищников. Режим доступа: http://rrrcn.ru/arcview-gis-dlya-ekologov5/24 (дата обращения: 03.06.20). ArcView GIS for Ecologists. Russian Raptor Research and Conservation Network.

Earth Explorer. U.S. Geological Survey. Available at: https://earthexplorer.usgs.gov/ (accessed 15.07.20).

Fast Line-of-Sight Atmospheric Analysis of Hypercubes (FLAASH). L3 Harris Geospatial documentation center. Available at: https://www.l3harrisgeospatial.com/docs/flaash.html (accessed 14.07.20).

Hadjimitsis D.G., Papadavid G., Agapiou A., Themistocleous K., Hadjimitsis M.G., Retalis A., Michaelides S., Chrysoulakis N., Toulios L., Clayton C.R.I. Atmospheric Correction for Satellite Remotely Sensed Data Intended for Agricultural Applications: Impact on Vegetation Indices. Natural Hazards and Earth System Sciences, 2010, vol. 10, iss. 1, pp. 89–95. DOI: https://doi.org/10.5194/nhess-10-89-2010

Meşələr. Respublikanın meşələri [The Forests of the Republic]. Ministry of Ecology and Natural Resources of Azerbaijan Republic. Available at: http://eco.gov.az/az/fealiyyet-istiqametleri/mesheler (accessed 25.10.19).

Naik P., Dalponte M., Bruzzone L. Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote Sensing Data. Remote Sensing, 2021, vol. 13, iss. 7, art. 1282. DOI: https://doi.org/10.3390/rs13071282

Teixeira Pinto C., Jing X., Leigh L. Evaluation Analysis of Landsat Level-1 and Level-2 Data Products Using in situ Measurements. Remote Sensing, 2020, vol. 12, iss. 16, art. 2597. DOI: https://doi.org/10.3390/rs12162597

Thome K.J., Biggar S.F., Gellman D.L., Slater P.N. Absolute-Radiometric Calibration of Landsat-5 Thematic Mapper and the Proposed Calibration of the Advanced Spaceborne Thermal Emission and Reflection Radiometer. Proceedings of IGARSS ’94 – 1994 IEEE International Geoscience and Remote Sensing Symposium. Pasadena, CA, IEEE, 1994, vol. 4, pp. 2295–2297. DOI: https://doi.org/10.1109/IGARSS.1994.399718

Zanter K. Landsat Collection 1 Level 1 Product Definition. Version 2.0. Sioux Falls, SD, USGS, 2019. 32 p.

Published

2022-02-15

How to Cite

Mamedaliyeva В. “Changes in Forested Areas of the North-Eastern Region of Azerbaijan Revealed by Satellite Images”. Lesnoy Zhurnal (Forestry Journal), no. 1, Feb. 2022, pp. 88-97, doi:10.37482/0536-1036-2022-1-88-97.