Фактор неидеальности в энтропийно-мультифрактальном анализе самоорганизованных структур растительных полимеров (лигнинов)
DOI:
https://doi.org/10.37482/0536-1036-2021-2-194-212Ключевые слова:
фактор неидеальности систем, фрактальные структуры, фрактальная размерность, информационная и термодинамическая энтропия, растворы полимеров, термодинамика растворов полимеров, лигниныАннотация
Предложено ввести обобщенный фактор неидеальности систем g в уравнения информационной энтропии, описывающие самоорганизованные структуры существенно неравновесных систем с приложением для изучения топологических свойств высокомолекулярных соединений в растворах на примере лигнинов древесины. Фактор g как относительная термодинамическая характеристика связывает идеальную и реальную модели систем, в которых можно выделить два конкурентных (противоположных по знаку и действию) процесса: порядок (–) ↔ хаос (+); притяжение (–) ↔ отталкивание (+); сжатие (–) ↔ расширение (+); кластеризация (–) ↔ распад (+) и т. д. g = 1 + 〈– βord + αnord〉 = 1 + 〈– pi (β) + pi (α)〉, где – βord ≡ 1/nΣinβi и αnopd ≡ 1/nΣniαi – относительные средние характеристики (pi – статистические вероятности) противоположно протекающих процессов. Фактор g изменяется в интервале 0 ≤ g ≤ 2 и зависит от того, какой из конкурентных процессов превалирует. При αnord = 0 g → 0, при βord = 0 g→2, при g = 1 поведение элементов системы будет идеальным. Фактор g вводится в любые классические уравнения, пригодные для изучения идеальных систем, в целях использования их для описания реальных систем (например, в уравнения Генри, Рауля, Вант-Гоффа, состояния идеального газа и т. д). Строго математически фактор g определен через величины М – мера, ε – масштаб, d – размерность в виде отношения логарифмов мер реального (М*) и идеального (М0) состояний объекта: g = lnМ*/lnМ0 = d/D, где М* и М0 может быть Nd – число элементов в структуре фрактального реального (например, кластера) или математического объекта (например, салфетка Серпинского) и ND – число элементов в структуре объекта в идеальном состоянии, обладающих свойством многомасштабности и самоподобия (d и D – фрактальная и евклидова размерности). Как термодинамическая характеристика gth определяется отношением термодинамических функций, функционалов, например, ΔGi*/ΔGi, где ΔGi* = –RTlnаi – реального и ΔGi = –RTlnNi – идеального состояний; количеством молей n* – реального состояния вещества к n – идеальному; относительными энтропиями системы ΔSreal/ΔSid. Получены новые выражения информационных и термодинамических энтропий с дольным (0¸1) моментом порядка – энтропийным gS и термодинамическим gth факторами неидеальности для анализа самоорганизованных квазиравновесных структур в формализме Реньи: SgSM–Rn(p) = R/(1 – gS)lnΣNipgSi; SgthM–Rn = R/(gth)ln(ΣNi=1pigth – 1). В формализме Тсаллиса SgSM–TS (p) = R(1 – ΣiN(ε)pigS)/(gS – 1); SgthM–TS (p) = R(1 – ΣiN(ε)pi1–gth)/gth с приложением для изучения топологических свойств высокомолекулярных соединений методами гидродинамики, а также термодинамики растворов полимеров.
Для цитирования: Макаревич Н.А. Фактор неидеальности в энтропийно-мультифрактальном анализе самоорганизованных структур растительных полимеров (лигнинов) // Изв. вузов. Лесн. журн. 2021. № 2. С. 194 –212. DOI: 10.37482/0536-1036-2021-2-194-212
Скачивания
Библиографические ссылки
Афанасьев Н.И. Структура макромолекул в растворах, на границах раздела фаз и поверхностно-активные свойства лигносульфонатов: дис. … д-ра. хим. наук. СПб.: ЛТА, 1996. 302 с. [Afanas’yev N.I. Structure of Macromolecules in Solutions and at the Phase Boundaries, the Surface-Active Properties of Lignosulfonates: Dr. Chem. Sci. Diss. Saint Petersburg, LTA Publ., 1996. 302 p.].
Афанасьев Н.И., Коробова Е.Н., Ферофонтова С.Д. Межмолекулярные взаимодействия в растворах лигносульфонатов // Изв. вузов. Лесн. журн. 1996, № 1-2. С. 110–117. [Afanas’yev N.I., Korobova E.N., Ferofontova S.D. Intermolecular Interactions in Solutions of Lignosulfonates. Lesnoy Zhurnal [Russian Forestry Journal], 1996, no. 1-2, pp. 110–117]. URL: http://lesnoizhurnal.ru/upload/iblock/c80/142_148.pdf
Башкиров А.Г. Энтропия Реньи как статистическая энтропия для сложных систем // ТМФ. 2006. Т. 149, № 2. С. 299–317. [Bashkirov A.G. Renyi Entropy as a Statistical Entropy for Complex Systems. Teoreticheskaya i Matematicheskaya Fizika [Theoretical and Mathematical Physics], 2006, vol. 149, no. 2, pp. 299–317]. DOI: 10.4213/tmf4235
Боголицын К.Г., Лунин В.В., Косяков Д.С., Карманов А.П., Скребец Т.Э. и др. Физическая химия лигнина. M.: Академкнига, 2010. 492 с. [Bogolitsyn K.G., Lunin V.V., Kosyakov D.S., Karmanov A.P., Skrebets T.E. et al. Physical Chemistry of Lignin. Moscow, Akademkniga Publ., 2010. 492 p.].
Бриллюэн Л. Научная неопределенность и информация. М.: Мир, 1966. 272 c. [Brillouin L. Scientific Uncertainty and Information. Translated from English. Moscow, Mir Publ., 1966. 272 p.]. DOI: 10.1016/C2013-0-12512-3
Будтов В.П. Физическая химия растворов полимеров. СПб.: Химия, 1992. 384 с. [Budtov V.P. Physical Chemistry of Polymer Solutions. Saint Petersburg, Khimiya Publ., 1992. 384 p.].
Зарипов Р.Г. Информация различия и переходы беспорядок−порядок. Казань: Изд-во Казан. гос. техн. ун-та, 1999. 155 с. [Zaripov R.G. Discrimination Information and Disorder − Order Transitions. Kazan, KSTU Publ., 1999. 155 p.].
Зубарев Д.Н., Морозов В.Г., Репке Г. Статистическая механика неравновесных процессов. М.: Физматлит, 2002. 432 с. [Zubarev D.N., Morozov V.G., Repke G. Statistical Mechanics of Nonequilibrium Processes. Moscow, Fizmatlit Publ., 2002. 432 p.].
Карманов А.П. Самоорганизация и структурная организация лигнина. Екатеринбург: УрО РАН, 2004. 270 с. [Karmanov A.P. Self-Organization and Structural Organization of Lignin. Yekaterinburg, UB RAS Publ., 2004. 270 p.].
Карманов А.П., Матвеев Д.В., Монаков Ю.Б. Динамика полимерных мономерных предшественников гваяцильных лигнинов // Докл. АН. 2001. Т. 380, № 5. С. 635–638. [Karmanov A.P., Matveyev D.V., Monakov Yu.B. The Dynamic of the Polymerization of Monomeric Precursors of Guaicyl Lignins. Doklady Akademii Nauk, 2001, vol. 380, no. 5, pp. 635–638].
Карманов А.П., Кузьмин Д.В., Шамшина И.Н., Беляев В.Ю., Кочева Л.С., Матвеев Д.В., Монаков Ю.Б. Исследование гидродинамических и конформационных свойств лигнинов из древесных растений Sorbus aucuparia и Robinia pseudoacacia // Высокомолекулярные соединения. Сер. А: Физика полимеров. 2004. Т. 46, № 6. С. 997–1004. [Karmanov A.P., Kuz’min D.V., Shamshina I.N., Belyaev V.Yu., Kocheva L.S., Matveev D.V., Monakov Yu.B. Hydrodynamic and Conformational Properties of Lignins from Sorbus aucuparia and Robinia pseudoacacia Woody Plants. Vysokomolekulyarnyye soyedineniya. Seriya A: Fizika polimerov [Polymer Science. Series A - Polymer Physics], 2004, vol. 46, no. 6, pp. 997–1004].
Климонтович Ю.Л. Статистическая теория открытых систем. Т. 1. М.: Янус, 1995. 624 c. [Klimontovich Yu.L. Statistical Theory of Open Systems. Vol. 1. Moscow, Yanus Publ., 1995. 624 p.].
Колесниченко А.В., Маров М.Я. Турбулентность и самоорганизация. Проблемы моделирования космических и природных сред. М.: БИНОМ. Лаборатория знаний, 2014. 632 с. [Kolesnichenko A.V., Marov M.Ya. Turbulence and Self-Organization. Problems of Modeling Space and Natural Environments. Moscow, BINOM. Laboratoriya znaniy Publ., 2014. 632 p.].
Макаревич Н.А. Фактор неидеальности в классических уравнениях для реальных газов и конденсированных систем: универсальный ассоциативно-ионизационный множитель в классических уравнениях для растворов неэлектролитов и электролитов // Докл. АН Беларуси. 2016. Т. 60, № 1. C. 94–101. [Makarevich N.A. Non-Ideality Factor in the Classical Equations for Real Gases and Condensed Systems: Universal Associative-Ionized Multiplier in the Classical Equations for Solutions of Nonelectrolytes and Electrolytes. Doklady Nacional’noj akademii nauk Belarusi [The Doklady of the National Academy of Sciences of Belarus], 2016, vol. 60, no. 1, pp. 94–101].
Макаревич Н.А. Межфазная граница «газ–жидкость–твердое тело»: моногр. Архангельск: САФУ, 2018. 411 с. [Makarevich N.A. Interface “Gas−Liquid− Solid”: Monograph. Arkhangelsk, NArFU Publ., 2018. 411 p.].
Полак Л.С., Михайлов А.С. Самоорганизация в неравновесных физико-химических процессах. М.: Наука, 1975. 351 c. [Polak L.S., Mikhaylov A.S. Self-Organization in Nonequilibrium Physical and Chemical Processes. Moscow, Nauka Publ., 1975. 351 p.].
Пригожин И., Кондепуди Д. Современная термодинамика. От тепловых двигателей до диссипативных структур. М.: Мир, 2002. 461 с. [Prigogine I., Kondepudi D. Modern Thermodynamics. From Heat Engines to Dissipative Structures. Translated from English. Moscow. Mir Publ., 2002. 461 p.].
Федер Е. Фракталы. М.: Мир, 1991. 254 с. [Feder J. Fractals. Translated from English. Moscow, Mir Publ., 1991. 254 p.]. DOI: 10.1007/978-1-4899-2124-6
Цветков В.Н., Лавренко П.Н., Бушин С.В. Гидродинамический инвариант полимерных молекул // Успехи химии. 1982. Т. 51, № 10. С. 1698–1732. [Tsvetkov V.N., Lavrenko P.N., Bushin S.V. A Hydrodynamic Invariant of Polymer Molecules. Uspekhi khimii [Russian Chemical Reviews], 1982, vol. 51, no. 10, pp. 1698–1732]. DOI: 10.1070/RC1982v051n10ABEH002935
Цветков В.Н., Эскин В.Е., Френкель С.Я. Структура макромолекул в растворах. М.: Наука, 1964. 720 с. [Tsvetkov V.N., Eskin V.E., Frenkel’ S.Ya. Structure of Macromolecules in Solutions. Moscow, Nauka Publ., 1964. 720 p.].
BBI JU Strengthens Collaboration on Sustainable Bioeconomy with the European Forest Institute. Materials of the Bio-Based Industries Joint Undertaking Website. 2020. Available at: https://www.bbi.europa.eu/news/bbi-ju-strengthens-collaboration-sustainablebioeconomy-european-forest-institute (accessed 23.12.19).
Cohen E.G.D. Superstatistics. Physica D: Nonlinear Phenomena, 2004, vol. 193, iss. 1-4, pp. 35–52. DOI: 10.1016/j.physd.2004.01.007
Efimova E.A., Ivanov A.O., Camp P.J. Thermodynamic Properties of Ferrofluids in Applied Magnetic Fields. Physical Review E, 2013, vol. 88, iss. 4, art. 042310. DOI: 10.1103/PhysRevE.88.042310
Jaynes E.T. Information Theory and Statistical Mechanics. Brandeis University Summer Institute Lectures in Theoretical Physics. Vol. 3 – Statistical Physics. New York, W.A. Benjamin Inc., 1963, pp. 181–218.
Joslin C., Goldman S. The Third Dielectric and Pressure Virial Coefficients of Dipolar Hard Sphere Fluids: II. Numerical Results. Molecular Physics, 1993, vol. 79, iss. 3, pp. 499–514. DOI: 10.1080/00268979300101401
Karmanov A.P., Monakov Yu.B. Hydrodynamic Properties and Structure of Lignin. International Journal of Polymeric Materials and Polymeric Biomaterials, 2000, vol. 48, iss. 2, pp. 151–175. DOI: 10.1080/00914030008050614
Karmanov A.P., Poleschikov S.M., Kocheva L.S. Theoretical and Experimental Simulation of Lignin Biosynthesis. Butlerovskiye soobshcheniya [Butlerov Communications], 2015, vol. 41, no. 3, pp. 147–151. DOI: 10.37952/ROI-jbc-01/15-41-3-147
Kullback S., Leibler R.A. On Information and Sufficiency. The Annals of Mathematical Statistics, 1951, vol. 22, iss. 1, pp. 79–86. DOI: 10.1214/aoms/1177729694
Maher P. Explication of Inductive Probability. Journal of Philosophical Logic, 2010, vol. 39, iss. 6, pp. 593–616. DOI: 10.1007/s10992-010-9144-4
Naimark O.B. Defect-Induced Transitions as Mechanisms of Plasticity and Failure in Multifield Continua. Advances in Multifield Theories of Continua with Substructure. Ed. by G. Capriz, P. Mariano. Boston, MA, Birkhäuser, 2004, pp. 75–114. DOI: 10.1007/978-0-8176-8158-6_4
Pavlos G.P. Complexity Theory, Time Series Analysis and Tsallis q-Entropy Principle Part One: Theoretical Aspects. Journal of the Mechanical Behavior of Materials, 2017, vol. 26, no. 5-6, pp. 139–180. DOI: 10.1515/jmbm-2017-0023
Rényi A. Probability Theory. North-Holland, Amsterdam, 1970. 670 p.
Szilard L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Zeitschrift für Physik, 1929, vol. 53, iss. 11-12, pp. 840–856. DOI: 10.1007/BF01341281
Tsallis C. Possible Generalization of Boltzmann-Gibbs Statistics. Journal of Statistical Physics, 1988, vol. 52, pp. 479–487. DOI: 10.1007/BF01016429
Wohlgemuth R., Twardowski T., Aguilar A. Bioeconomy Moving forward Step by Step – A Global Journey. New Biotechnology, 2021, vol. 61, pp. 22–28. DOI: 10.1016/j.nbt.2020.11.006