Роль биомаркеров мочи в диагностике туберкулеза легких (обзор)
DOI:
https://doi.org/10.37482/2687-1491-Z138Ключевые слова:
метаболомный анализ, масс-спектрометрия MALDI-TOF,, диагностика туберкулеза, предикторы эффективности лечения туберкулеза, хемокин IP-10, трансренальная ДНК, биомаркеры мочиАннотация
Диагностика туберкулеза на основе анализа мокроты имеет ограничения для отдельных категорий пациентов (пожилые люди, дети, лица, живущие с ВИЧ). Альтернативным методом может быть ускоренный поиск биомаркеров заболевания в моче, при котором возможно получение большего объема материала неинвазивным путем. Проведен поиск публикаций на английском языке в базах данных PubMed и Cochrane Library, опубликованных с 2010 по 2021 год, с использованием терминов tuberculosis + urine + biomarkers. Работы, посвященные анализу липоарабиноманнана в моче, исключены из данного обзора в связи с изученностью темы. В рассмотренных публикациях представлено более 30 биомаркеров мочи, используемых для диагностики туберкулеза и оценки эффективности противотуберкулезной терапии. Активно продолжает изучаться экстракция микобактериальной трансренальной ДНК из мочи, но чувствительность и специфичность диагностики зависят от метода экстракции и ВИЧ-статуса пациента. Биомаркер туберкулеза IP-10, вероятно, является неспецифическим маркером воспаления, однако его уровень коррелирует с ВИЧ-статусом и может быть полезен для оценки ответа на противотуберкулезное лечение. Показан потенциал метаболомных биомаркеров и биосигнатур в оценке активности туберкулезного процесса и дифференциальной диагностике туберкулеза с другими респираторными заболеваниями. Количество достоверных биомаркеров для прогнозирования результатов лечения туберкулеза ограничено. В многочисленных нецелевых исследованиях масс-спектроскопический анализ использовался для выявления метаболомных и протеомных биомаркеров в моче. Представленные работы отличались по дизайну и методам исследования, лишь некоторые публикации содержали анализ специфичности и чувствительности рассматриваемых методов диагностики. В будущем комбинация биомаркеров хозяина и патогена может повысить чувствительность и специфичность диагностики туберкулеза.
Скачивания
Библиографические ссылки
Global Tuberculosis Report 2021 / World Health Organization. Geneva, 2021. 57 p.
Drobniewski F., Nikolayevskyy V., Maxeiner H., Balabanova Y., Casali N., Kontsevaya I., Ignatyeva O. Rapid Diagnostics of Tuberculosis and Drug Resistance in the Industrialized World: Clinical and Public Health Benefits and Barriers to Implementation // BMC Med. 2013. Vol. 11. Art. № 190. DOI: 10.1186/1741-7015-11-190
High Priority Target Product Profiles for New Tuberculosis Diagnostics: Report of a Consensus Meeting / World Health Organization. Geneva, 28–29 April 2014. 96 p. URL: https://apps.who.int/iris/handle/10665/135617 (дата обращения: 06.04.2022).
Lateral Flow Urine Lipoarabinomannan Assay (LF-LAM) for the Diagnosis of Active Tuberculosis in People Living with HIV. Policy Update 2019 / World Health Organization. Geneva, 2019. 44 p.
Fernández-Carballo B.L., Broger T., Wyss R., Banaei N., Denkinger C.M. Toward the Development of a Circulating Free DNA-Based in vitro Diagnostic Test for Infectious Diseases: А Review of Evidence for Tuberculosis // J. Clin. Microbiol. 2019. Vol. 57, № 4. Art. № e01234-18. DOI: 10.1128/JCM.01234-18
Oreskovic A., Brault N.D., Panpradist N., Lai J.J., Lutz B.R. Analytical Comparison of Methods for Extraction of Short Cell-Free DNA from Urine // J. Mol. Diagn. 2019. Vol. 21, № 6. P. 1067–1078. DOI: 10.1016/j.jmoldx.2019.07.002
Patel K., Nagel M., Wesolowski M., Dees S., Rivera-Milla E., Geldmacher C., Dheda K., Hoelscher M., Labugger I. Evaluation of a Urine-Based Rapid Molecular Diagnostic Test with Potential to Be Used at Point-of-Care for Pulmonary Tuberculosis: Cape Town Cohort // J. Mol. Diagn. 2018. Vol. 20, № 2. P. 215–224. DOI: 10.1016/j.jmoldx.2017.11.005
Bordelon H., Russ P.K., Wright D.W., Haselton F.R. A Magnetic Bead-Based Method for Concentrating DNA from Human Urine for Downstream Detection // PLoS One. 2013. Vol. 8, № 7. Art. № e68369. DOI: 10.1371/journal.pone.0068369
Bordelon H., Ricks K.M., Pask M.E., Russ P.K., Solinas F., Baglia M.L., Short P.A., Nel A., Blackburn J., Dheda K., Zamudio C., Cáceres T., Wright D.W., Haselton F.R., Pettit A.C. Design and Use of Mouse Control DNA for DNA Biomarker Extraction and PCR Detection from Urine: Application for Transrenal Mycobacterium tuberculosis DNA Detection // J. Microbiol. Methods. 2017. Vol. 136. P. 65–70. DOI: 10.1016/j.mimet.2017.02.010
Oreskovic A., Panpradist N., Marangu D., Ngwane M.W., Magcaba Z.P., Ngcobo S., Ngcobo Z., Horne D.J., Wilson D.P.K., Shapiro A.E., Drain P.K., Lutz B.R. Diagnosing Pulmonary Tuberculosis by Using Sequence-Specific Purification of Urine Cell-Free DNA // J. Clin. Microbiol. 2021. Vol. 59, № 8. Art. № e0007421. DOI: 10.1128/JCM.00074-21
Oreskovic A., Waalkes A., Holmes E.A., Rosenthal C.A., Wilson D.P.K., Shapiro A.E., Drain P.K., Lutz B.R., Salipante S.J. Characterizing the Molecular Composition and Diagnostic Potential of Mycobacterium tuberculosis Urinary Cell-Free DNA Using Next-Generation Sequencing // Int. J. Infect. Dis. 2021. Vol. 112. P. 330–337. DOI: 10.1016/j.ijid.2021.09.042
Sinkov V.V., Ogarkov O.B., Plotnikov A.O., Gogoleva N.E., Zhdanova S.N., Pervanchuk V.L., Belkova N.L., Koshcheev M.E., Thomas T.A., Liu J., Zorkaltseva E.Y., Heysell S.K. Metagenomic Analysis of Mycobacterial Transrenal DNA in Patients with HIV and Tuberculosis Coinfection // Infect. Genet. Evol. 2020. Vol. 77. Art. № 104057. DOI: 10.1016/j.meegid.2019.104057
Hayney M.S., Henriquez K.M., Barnet J.H., Ewers T., Champion H.M., Flannery S., Barrett B. Serum IFN-γ-Induced Protein 10 (IP-10) as a Biomarker for Severity of Acute Respiratory Infection in Healthy Adults // J. Clin. Virol. 2017. Vol. 90. P. 32–37. DOI: 10.1016/j.jcv.2017.03.003
Kim S.Y., Kim J., Kim D.R., Kang Y.A., Bong S., Lee J., Kim S., Lee N.S., Sim B., Cho S.N., Kim Y.S., Lee H. Urine IP-10 as a Biomarker of Therapeutic Response in Patients with Active Pulmonary Tuberculosis // BMC Infect. Dis. 2018. Vol. 18, № 1. Art. № 240. DOI: 10.1186/s12879-018-3144-3
Petrone L., Cannas A., Vanini V., Cuzzi G., Aloi F., Nsubuga M., Sserunkuma J., Nazziwa R.A., Jugheli L., Lukindo T., Girardi E., Antinori A., Pucci L., Reither K., Goletti D. Blood and Urine Inducible Protein 10 as Potential Markers of Disease Activity // Int. J. Tuberc. Lung Dis. 2016. Vol. 20, № 11. P. 1554–1561. DOI: 10.5588/ijtld.16.0342
Petrone L., Cannas A., Aloi F., Nsubuga M., Sserumkuma J., Nazziwa R.A., Jugheli L., Lukindo T., Girardi E., Reither K., Goletti D. Blood or Urine IP-10 Can Not Discriminate Between Active Tuberculosis and Respiratory Diseases Different from Tuberculosis in Children // Biomed. Res. Int. 2015. Vol. 2015. Art. № 589471. DOI: 10.1155/2015/589471
Cannas A., Calvo L., Chiacchio T., Cuzzi G., Vanini V., Lauria F.N., Pucci L., Girardi E., Goletti D. IP-10 Detection in Urine Is Associated with Lung Diseases // BMC Infect. Dis. 2010. Vol. 10. Art. № 333. DOI: 10.1186/1471-2334-10-333
Fortún J., Martín-Dávila P., Gómez-Mampaso E., González-García A., Barbolla I., Gómez-García I., Wikman P., Ortíz J., Navas E., Cuartero C., Gijón D., Moreno S. Extra-Pulmonary Tuberculosis: Differential Aspects and Role of 16S-rRNA in Urine // Int. J. Tuberc. Lung Dis. 2014. Vol. 18, № 4. P. 478–485. DOI: 10.5588/ijtld.13.0555
Cubero N., Esteban J., Palenque E., Rosell A., Garcia M.J. Evaluation of the Detection of Mycobacterium tuberculosis with Metabolic Activity in Culture-Negative Human Clinical Samples // Clin. Microbiol. Infect. 2013. Vol. 19, № 3. P. 273–278. DOI: 10.1111/j.1469-0691.2012.03779.x
Isa F., Collins S., Lee M.H., Decome D., Dorvil N., Joseph P., Smith L., Salerno S., Wells M.T., Fischer S., Bean J.M., Pape J.W., Johnson W.D., Fitzgerald D.W., Rhee K.Y. Mass Spectrometric Identification of Urinary Biomarkers of Pulmonary Tuberculosis // EBioMedicine. 2018. Vol. 31. P. 157–165. DOI: 10.1016/j.ebiom.2018.04.014
Deng J., Liu L., Yang Q., Wei C., Zhang H., Xin H., Pan S., Liu Z., Wang D., Liu B., Gao L., Liu R., Pang Y., Chen X., Zheng J., Jin Q. Urinary Metabolomic Analysis to Identify Potential Markers for the Diagnosis of Tuberculosis and Latent Tuberculosis // Arch. Biochem. Biophys. 2021. Vol. 704. Art. № 108876. DOI: 10.1016/j.abb.2021.108876
Liu L., Deng J., Yang Q., Wei C., Liu B., Zhang H., Xin H., Pan S., Liu Z., Wang D., Pang Y., Chen X., Gao L., Zheng J., Liu R., Jin Q. Urinary Proteomic Analysis to Identify a Potential Protein Biomarker Panel for the Diagnosis of Tuberculosis // IUBMB Life. 2021. Vol. 73, № 8. P. 1073–1083. DOI: 10.1002/iub.2509
Dang N.A., Janssen H.-G., Kolk A.H. Rapid Diagnosis of TB Using GC-MS and Chemometrics // Bioanalysis. 2013. Vol. 5, № 24. P. 3079–3097. DOI: 10.4155/bio.13.288
Sandlund J., Lim S., Queralto N., Huang R., Yun J., Taba B., Song R., Odero R., Ouma G., Sitati R., Murithi W., Cain K.P., Banaei N. Development of Colorimetric Sensor Array for Diagnosis of Tuberculosis Through Detection of Urinary Volatile Organic Compounds // Diagn. Microbiol. Infect. Dis. 2018. Vol. 92, № 4. P. 299–304. DOI: 10.1016/j.diagmicrobio.2018.06.014
Russell T.M., Green L.S., Rice T., Kruh-Garcia N.A., Dobos K., De Groote M.A., Hraha T., Sterling D.G., Janjic N., Ochsner U.A. Potential of High-Affinity, Slow Off-Rate Modified Aptamer Reagents for Mycobacterium tuberculosis Proteins as Tools for Infection Models and Diagnostic Applications // J. Clin. Microbiol. 2017. Vol. 55, № 10. P. 3072–3088. DOI: 10.1128/JCM.00469-17
Pollock N.R., Macovei L., Kanunfre K., Dhiman R., Restrepo B.I., Zarate I., Pino P.A., Mora-Guzman F., Fujiwara R.T., Michel G., Kashino S.S., Campos-Neto A. Validation of Mycobacterium tuberculosis Rv1681 Protein as a Diagnostic Marker of Active Pulmonary Tuberculosis // J. Clin. Microbiol. 2013. Vol. 51, № 5. P. 1367–1373. DOI: 10.1128/JCM.03192-12
Kim S.H., Lee N.-E., Lee J.S., Shin J.H., Lee J.Y., Ko J.-H., Chang C.L., Kim Y.-S. Identification of Mycobacterial Antigens in Human Urine by Use of Immunoglobulin G Isolated from Sera of Patients with Active Pulmonary Tuberculosis // J. Clin. Microbiol. 2016. Vol. 54, № 6. P. 1631–1637. DOI: 10.1128/JCM.00236-16
Eribo O.A., Leqheka M.S., Malherbe S.T., McAnda S., Stanley K., van der Spuy G.D., Walzl G., Chegou N.N. Host Urine Immunological Biomarkers as Potential Candidates for the Diagnosis of Tuberculosis // Int. J. Infect. Dis. 2020. Vol. 99. P. 473–481. DOI: 10.1016/j.ijid.2020.08.019
Das M.K., Bishwal S.C., Das A., Dabral D., Badireddy V.K., Pandit B., Varghese G.M., Nanda R.K. Deregulated Tyrosine-Phenylalanine Metabolism in Pulmonary Tuberculosis Patients // J. Proteome Res. 2015. Vol. 14, № 4. P. 1947–1956. DOI: 10.1021/acs.jproteome.5b00016
Fitzgerald B.L., Mahapatra S., Farmer D.K., McNeil M.R., Casero R.A. Jr., Belisle J.T. Elucidating the Structure of N1-Acetylisoputreanine: A Novel Polyamine Catabolite in Human Urine // ACS Omega. 2017. Vol. 2, № 7. P. 3921–3930. DOI: 10.1021/acsomega.7b00872
Xia Q., Lee M.H., Rhee K., Isa F. 1886. N1, N12-Diacetylspermine as Potential Urinary Biomarker to Monitor Treatment Response and Bacterial Load in Pulmonary Tuberculosis // Open Forum Infect. Dis. 2019. Vol. 6, suppl. 2. Art. № S53. DOI: 10.1093/ofid/ofz359.116
Xia Q., Lee M.H., Walsh K.F., McAulay K., Bean J.M., Fitzgerald D.W., Dupnik K.M., Johnson W.D., Pape J.W., Rhee K.Y., Isa F. Urinary Biomarkers of Mycobacterial Load and Treatment Response in Pulmonary Tuberculosis // JCI Insight. 2020. Vol. 5, № 18. Art. № e136301. DOI: 10.1172/jci.insight.136301
Fitzgerald B.L., Islam M.N., Graham B., Mahapatra S., Webb K., Boom W.H., Malherbe S.T., Joloba M.L., Johnson J.L., Winter J., Walzl G., Belisle J.T. Correction to “Elucidation of a Novel Human Urine Metabolite as a Seryl-Leucine Glycopeptide and as a Biomarker of Effective Anti-Tuberculosis Therapy” // ACS Infect. Dis. 2019. Vol. 5, № 6. P. 1042–1043. DOI: 10.1021/acsinfecdis.9b00068
Combrink M., du Preez I., Ronacher K., Walzl G., Loots D.T. Time-Dependent Changes in Urinary Metabolome Before and After Intensive Phase Tuberculosis Therapy: A Pharmacometabolomics Study // OMICS. 2019. Vol. 23, № 11. P. 560–572. DOI: 10.1089/omi.2019.0140
Mahapatra S., Hess A.M., Johnson J.L., Eisenach K.D., DeGroote M.A., Gitta P., Joloba M.L., Kaplan G., Walzl G., Boom W.H., Belisle J.T. A Metabolic Biosignature of Early Response to Anti-Tuberculosis Treatment // BMC Infect. Dis. 2014. Vol. 14. Art. № 53. DOI: 10.1186/1471-2334-14-53
Luies L., van Reenen M., Ronacher K., Walzl G., Loots D.T. Predicting Tuberculosis Treatment Outcome Using Metabolomics // Biomark. Med. 2017. Vol. 11, № 12. P. 1057–1067. DOI: 10.2217/bmm-2017-0133
References
Global Tuberculosis Report 2021. World Health Organization. Geneva, 2021. 57 p.
Drobniewski F., Nikolayevskyy V., Maxeiner H., Balabanova Y., Casali N., Kontsevaya I., Ignatyeva O. Rapid Diagnostics of Tuberculosis and Drug Resistance in the Industrialized World: Clinical and Public Health Benefits and Barriers to Implementation. BMC Med., 2013, vol. 11. Art. no. 190. DOI: 10.1186/1741-7015-11-190
High Priority Target Product Profiles for New Tuberculosis Diagnostics: Report of a Consensus Meeting. World Health Organization. Geneva, 28–29 April 2014. 96 p. Available at: https://apps.who.int/iris/handle/10665/135617 (accessed: 6 April 2022).
Lateral Flow Urine Lipoarabinomannan Assay (LF-LAM) for the Diagnosis of Active Tuberculosis in People Living with HIV. Policy Update 2019. World Health Organization. Geneva, 2019. 44 p.
Fernández-Carballo B.L., Broger T., Wyss R., Banaei N., Denkinger C.M. Toward the Development of a Circulating Free DNA-Based in vitro Diagnostic Test for Infectious Diseases: A Review of Evidence for Tuberculosis. J. Clin. Microbiol., 2019, vol. 57, no. 4. Art. no. e01234-18. DOI: 10.1128/JCM.01234-18
Oreskovic A., Brault N.D., Panpradist N., Lai J.J., Lutz B.R. Analytical Comparison of Methods for Extraction of Short Cell-Free DNA from Urine. J. Mol. Diagn., 2019, vol. 21, no. 6, pp. 1067–1078. DOI: 10.1016/j.jmoldx.2019.07.002
Patel K., Nagel M., Wesolowski M., Dees S., Rivera-Milla E., Geldmacher C., Dheda K., Hoelscher M., Labugger I. Evaluation of a Urine-Based Rapid Molecular Diagnostic Test with Potential to Be Used at Point-of-Care for Pulmonary Tuberculosis: Cape Town Cohort. J. Mol. Diagn., 2018, vol. 20, no. 2, pp. 215–224. DOI: 10.1016/j.jmoldx.2017.11.005
Bordelon H., Russ P.K., Wright D.W., Haselton F.R. A Magnetic Bead-Based Method for Concentrating DNA from Human Urine for Downstream Detection. PLoS One, 2013, vol. 8, no. 7. Art. no. e68369. DOI: 10.1371/journal.pone.0068369
Bordelon H., Ricks K.M., Pask M.E., Russ P.K., Solinas F., Baglia M.L., Short P.A., Nel A., Blackburn J., Dheda K., Zamudio C., Cáceres T., Wright D.W., Haselton F.R., Pettit A.C. Design and Use of Mouse Control DNA for DNA Biomarker Extraction and PCR Detection from Urine: Application for Transrenal Mycobacterium tuberculosis DNA Detection. J. Microbiol. Methods, 2017, vol. 136, pp. 65–70. DOI: 10.1016/j.mimet.2017.02.010
Oreskovic A., Panpradist N., Marangu D., Ngwane M.W., Magcaba Z.P., Ngcobo S., Ngcobo Z., Horne D.J., Wilson D.P.K., Shapiro A.E., Drain P.K., Lutz B.R. Diagnosing Pulmonary Tuberculosis by Using Sequence-Specific Purification of Urine Cell-Free DNA. J. Clin. Microbiol., 2021, vol. 59, no. 8. Art. no. e0007421. DOI: 10.1128/JCM.00074-21
Oreskovic A., Waalkes A., Holmes E.A., Rosenthal C.A., Wilson D.P.K., Shapiro A.E., Drain P.K., Lutz B.R., Salipante S.J. Characterizing the Molecular Composition and Diagnostic Potential of Mycobacterium tuberculosis Urinary Cell-Free DNA Using Next-Generation Sequencing. Int. J. Infect. Dis., 2021, vol. 112, pp. 330–337. DOI: 10.1016/j.ijid.2021.09.042
Sinkov V.V., Ogarkov O.B., Plotnikov A.O., Gogoleva N.E., Zhdanova S.N., Pervanchuk V.L., Belkova N.L., Koshcheev M.E., Thomas T.A., Liu J., Zorkaltseva E.Y., Heysell S.K. Metagenomic Analysis of Mycobacterial Transrenal DNA in Patients with HIV and Tuberculosis Coinfection. Infect. Genet. Evol., 2020, vol. 77. Art. no. 104057. DOI: 10.1016/j.meegid.2019.104057
Hayney M.S., Henriquez K.M., Barnet J.H., Ewers T., Champion H.M., Flannery S., Barrett B. Serum IFN-γ-Induced Protein 10 (IP-10) as a Biomarker for Severity of Acute Respiratory Infection in Healthy Adults. J. Clin. Virol., 2017, vol. 90, pp. 32–37. DOI: 10.1016/j.jcv.2017.03.003
Kim S.Y., Kim J., Kim D.R., Kang Y.A., Bong S., Lee J., Kim S., Lee N.S., Sim B., Cho S.N., Kim Y.S., Lee H. Urine IP-10 as a Biomarker of Therapeutic Response in Patients with Active Pulmonary Tuberculosis. BMC Infect. Dis., 2018, vol. 18, no. 1. Art. no. 240. DOI: 10.1186/s12879-018-3144-3
Petrone L., Cannas A., Vanini V., Cuzzi G., Aloi F., Nsubuga M., Sserunkuma J., Nazziwa R.A., Jugheli L., Lukindo T., Girardi E., Antinori A., Pucci L., Reither K., Goletti D. Blood and Urine Inducible Protein 10 as Potential Markers of Disease Activity. Int. J. Tuberc. Lung Dis., 2016, vol. 20, no. 11, pp. 1554–1561. DOI: 10.5588/ijtld.16.0342
Petrone L., Cannas A., Aloi F., Nsubuga M., Sserumkuma J., Nazziwa R.A., Jugheli L., Lukindo T., Girardi E., Reither K., Goletti D. Blood or Urine IP-10 Can Not Discriminate Between Active Tuberculosis and Respiratory Diseases Different from Tuberculosis in Children. Biomed. Res. Int., 2015, vol. 2015. Art. no. 589471. DOI: 10.1155/2015/589471
Cannas A., Calvo L., Chiacchio T., Cuzzi G., Vanini V., Lauria F.N., Pucci L., Girardi E., Goletti D. IP-10 Detection in Urine Is Associated with Lung Diseases. BMC Infect. Dis., 2010, vol. 10. Art. no. 333. DOI: 10.1186/1471-2334-10-333
Fortún J., Martín-Dávila P., Gómez-Mampaso E., González-García A., Barbolla I., Gómez-García I., Wikman P., Ortíz J., Navas E., Cuartero C., Gijón D., Moreno S. Extra-Pulmonary Tuberculosis: Differential Aspects and Role of 16S-rRNA in Urine. Int. J. Tuberc. Lung Dis., 2014, vol. 18, no. 4, pp. 478–485. DOI: 10.5588/ijtld.13.0555
Cubero N., Esteban J., Palenque E., Rosell A., Garcia M.J. Evaluation of the Detection of Mycobacterium tuberculosis with Metabolic Activity in Culture-Negative Human Clinical Samples. Clin. Microbiol. Infect., 2013, vol. 19, no. 3, pp. 273–278. DOI: 10.1111/j.1469-0691.2012.03779.x
Isa F., Collins S., Lee M.H., Decome D., Dorvil N., Joseph P., Smith L., Salerno S., Wells M.T., Fischer S., Bean J.M., Pape J.W., Johnson W.D., Fitzgerald D.W., Rhee K.Y. Mass Spectrometric Identification of Urinary Biomarkers of Pulmonary Tuberculosis. EBioMedicine, 2018, vol. 31, pp. 157–165. DOI: 10.1016/j.ebiom.2018.04.014
Deng J., Liu L., Yang Q., Wei C., Zhang H., Xin H., Pan S., Liu Z., Wang D., Liu B., Gao L., Liu R., Pang Y., Chen X., Zheng J., Jin Q. Urinary Metabolomic Analysis to Identify Potential Markers for the Diagnosis of Tuberculosis and Latent Tuberculosis. Arch. Biochem. Biophys., 2021, vol. 704. Art. no. 108876. DOI: 10.1016/j.abb.2021.108876
Liu L., Deng J., Yang Q., Wei C., Liu B., Zhang H., Xin H., Pan S., Liu Z., Wang D., Pang Y., Chen X., Gao L., Zheng J., Liu R., Jin Q. Urinary Proteomic Analysis to Identify a Potential Protein Biomarker Panel for the Diagnosis of Tuberculosis. IUBMB Life, 2021, vol. 73, no. 8, pp. 1073–1083. DOI: 10.1002/iub.2509
Dang N.A., Janssen H.-G., Kolk A.H. Rapid Diagnosis of TB Using GC-MS and Chemometrics. Bioanalysis, 2013, vol. 5, no. 24, pp. 3079–3097. DOI: 10.4155/bio.13.288
Sandlund J., Lim S., Queralto N., Huang R., Yun J., Taba B., Song R., Odero R., Ouma G., Sitati R., Murithi W., Cain K.P., Banaei N. Development of Colorimetric Sensor Array for Diagnosis of Tuberculosis Through Detection of Urinary Volatile Organic Compounds. Diagn. Microbiol. Infect. Dis., 2018, vol. 92, no. 4, pp. 299–304. DOI: 10.1016/j.diagmicrobio.2018.06.014
Russell T.M., Green L.S., Rice T., Kruh-Garcia N.A., Dobos K., De Groote M.A., Hraha T., Sterling D.G., Janjic N., Ochsner U.A. Potential of High-Affinity, Slow Off-Rate Modified Aptamer Reagents for Mycobacterium tuberculosis Proteins as Tools for Infection Models and Diagnostic Applications. J. Clin. Microbiol., 2017, vol. 55, no. 10, pp. 3072–3088. DOI: 10.1128/JCM.00469-17
Pollock N.R., Macovei L., Kanunfre K., Dhiman R., Restrepo B.I., Zarate I., Pino P.A., Mora-Guzman F., Fujiwara R.T., Michel G., Kashino S.S., Campos-Neto A. Validation of Mycobacterium tuberculosis Rv1681 Protein as a Diagnostic Marker of Active Pulmonary Tuberculosis. J. Clin. Microbiol., 2013, vol. 51, no. 5, pp. 1367–1373. DOI: 10.1128/JCM.03192-12
Kim S.H., Lee N.-E., Lee J.S., Shin J.H., Lee J.Y., Ko J.-H., Chang C.L., Kim Y.-S. Identification of Mycobacterial Antigens in Human Urine by Use of Immunoglobulin G Isolated from Sera of Patients with Active Pulmonary Tuberculosis. J. Clin. Microbiol., 2016, vol. 54, no. 6, pp. 1631–1637. DOI: 10.1128/JCM.00236-16
Eribo O.A., Leqheka M.S., Malherbe S.T., McAnda S., Stanley K., van der Spuy G.D., Walzl G., Chegou N.N. Host Urine Immunological Biomarkers as Potential Candidates for the Diagnosis of Tuberculosis. Int. J. Infect. Dis., 2020, vol. 99, pp. 473–481. DOI: 10.1016/j.ijid.2020.08.019
Das M.K., Bishwal S.C., Das A., Dabral D., Badireddy V.K., Pandit B., Varghese G.M., Nanda R.K. Deregulated Tyrosine-Phenylalanine Metabolism in Pulmonary Tuberculosis Patients. J. Proteome Res., 2015, vol. 14, no. 4, pp. 1947–1956. DOI: 10.1021/acs.jproteome.5b00016
Fitzgerald B.L., Mahapatra S., Farmer D.K., McNeil M.R., Casero R.A. Jr., Belisle J.T. Elucidating the Structure of N1-Acetylisoputreanine: A Novel Polyamine Catabolite in Human Urine. ACS Omega, 2017, vol. 2, no. 7, pp. 3921–3930. DOI: 10.1021/acsomega.7b00872
Xia Q., Lee M.H., Rhee K., Isa F. 1886. N1, N12-Diacetylspermine as Potential Urinary Biomarker to Monitor Treatment Response and Bacterial Load in Pulmonary Tuberculosis. Open Forum Infect. Dis., 2019, vol. 6, suppl. 2. Art. no. S53. DOI: 10.1093/ofid/ofz359.116
Xia Q., Lee M.H., Walsh K.F., McAulay K., Bean J.M., Fitzgerald D.W., Dupnik K.M., Johnson W.D., Pape J.W., Rhee K.Y., Isa F. Urinary Biomarkers of Mycobacterial Load and Treatment Response in Pulmonary Tuberculosis. JCI Insight, 2020, vol. 5, no. 18. Art. no. e136301. DOI: 10.1172/jci.insight.136301
Fitzgerald B.L., Islam M.N., Graham B., Mahapatra S., Webb K., Boom W.H., Malherbe S.T., Joloba M.L., Johnson J.L., Winter J., Walzl G., Belisle J.T. Correction to “Elucidation of a Novel Human Urine Metabolite as a Seryl-Leucine Glycopeptide and as a Biomarker of Effective Anti-Tuberculosis Therapy”. ACS Infect. Dis., 2019, vol. 5, no. 6, pp. 1042–1043. DOI: 10.1021/acsinfecdis.9b00068
Combrink M., du Preez I., Ronacher K., Walzl G., Loots D.T. Time-Dependent Changes in Urinary Metabolome Before and After Intensive Phase Tuberculosis Therapy: A Pharmacometabolomics Study. OMICS, 2019, vol. 23, no. 11, pp. 560–572. DOI: 10.1089/omi.2019.0140
Mahapatra S., Hess A.M., Johnson J.L., Eisenach K.D., DeGroote M.A., Gitta P., Joloba M.L., Kaplan G., Walzl G., Boom W.H., Belisle J.T. A Metabolic Biosignature of Early Response to Anti-Tuberculosis Treatment. BMC Infect. Dis., 2014, vol. 14. Art. no. 53. DOI: 10.1186/1471-2334-14-53
Luies L., van Reenen M., Ronacher K., Walzl G., Loots D.T. Predicting Tuberculosis Treatment Outcome Using Metabolomics. Biomark. Med., 2017, vol. 11, no. 12, pp. 1057–1067. DOI: 10.2217/bmm-2017-0133