Роль ацетилхолиновой системы и ее компонентов в формировании постковидных синдромов (обзор)

Авторы

  • Дмитрий Витальевич Муженя Майкопский государственный технологический университет (Майкоп, Россия) https://orcid.org/0000-0002-4379-0634
  • Сергей Петрович Лысенков Майкопский государственный технологический университет (Майкоп, Россия) https://orcid.org/0000-0003-1179-8938

DOI:

https://doi.org/10.37482/2687-1491-Z182

Ключевые слова:

нарушение работы ацетилхолиновой системы, нервно-мышечный синапс, нарушение синаптической сигнализации, последствия COVID-19, постковидный синдром

Аннотация

Согласно последним опубликованным данным, COVID-19 классифицируется как респираторный вирус. Однако доказано, что он вызывает значительную полиорганную дисфункцию. Несмотря на повышение эффективности тактики лечения, у пациентов после выздоровления наблюдается постковидный симптомокомплекс, проявляющийся в виде головной боли, «тумана в голове», высокой температуры, мышечной слабости, снижения (или повышения) артериального давления. Для описания этого состояния предложена клиническая характеристика – постострый синдром COVID-19 (PACS). Примерно у 57 % пациентов, госпитализированных с COVID-19, наблюдаются симптомы PACS даже через 1 год после первоначального заражения COVID-19. Данное патологическое состояние активно изучается, однако вопрос о причинах возникновения PACS и механизмах его развития остается открытым. Одной из возможных причин указанной симптоматики, по мнению авторов статьи, является нарушение в работе ацетилхолиновой системы и ее компонентов в организме. Эта система играет интегральную роль в различных физиологических и патофизиологических процессах, таких как регуляция мышечной системы, иммунные и воспалительные реакции, заживление ран, развитие сердечно-сосудистых, респираторных и других заболеваний. Ключевой способ трансляции сигналов ацетилхолиновой системы в организме – синаптическая передача посредством химического синапса. На основе современных литературных данных можно сделать вывод, что вирусная инвазия способна существенно изменить функциональную активность блуждающего нерва путем нарушения передачи сигнала в синапсе. Авторы статьи полагают, что гипериммунный ответ, вызванный COVID-19, запускает цепь патологических механизмов, которые связаны с нарушением продукции оксида азота, баланса ацетилхолина и его рецепторов. Понимание этих процессов, возможно, откроет перспективы для повышения эффективности лечения и реабилитации пациентов с COVID-19.

Скачивания

Данные скачивания пока недоступны.

Библиографические ссылки

WHO COVID-19 Dashboard. URL: https://covid19.who.int/ (дата обращения: 04.04.2023).

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li X., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao H., Jin Q., Wang J., Cao B. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China // Lancet. 2020. Vol. 395, № 10223. Р. 497–506. https://doi.org/10.1016/s0140-6736(20)30183-5

Yahia A.I.O. Liver Injury and Dysfunction Associated with COVID-19: A Review Article // Clin. Lab. 2022. Vol. 68, № 1. https://doi.org/10.7754/clin.lab.2021.210535

Ayoubkhani D., Khunti K., Nafilyan V., Maddox T., Humberstone B., Diamond I., Banerjee A. Post-Covid Syndrome in Individuals Admitted to Hospital with Covid-19: Retrospective Cohort Study // BMJ. 2021. Vol. 372. Art. № n693. https://doi.org/10.1136/bmj.n693

Djhysiol. 2022. Vol. 322, № 1. P. C1–C11. https://doi.org/10.1152/ajpcell.00375.2021

Tobler D.L., Pruzansky A.J., Naderi S., Ambrosy A.P., Slade J.J. Long-Term Cardiovascular Effects of COVID-19: Emerging Data Relevant to the Cardiovascular Clinician // Curr. Atheroscler. Rep. 2022. Vol. 24, № 7. P. 563–570. https://doi.org/10.1007/s11883-022-01032-8

Willi S., Lüthold R., Hunt A., Hänggi N.V., Sejdiu D., Scaff C., Bender N., Staub K., Schlagenhauf P. COVID-19 Sequelae in Adults Aged Less Than 50 Years: A Systematic Review // Travel Med. Infect. Dis. 2021. Vol. 40. Art. № 101995. https://doi.org/10.1016/j.tmaid.2021.101995

Haam J., Yakel J.L. Cholinergic Modulation of the Hippocampal Region and Memory Function // J. Neurochem. 2017. Vol. 142, suppl. 2. Р. 111–121. https://doi.org/10.1111/jnc.14052

Mesulam M. The Cholinergic Lesion of Alzheimer’s Disease: Pivotal Factor or Side Show? // Learn. Mem. 2004. Vol. 11, № 1. Р. 43–49. https://doi.org/10.1101/lm.69204

Picciotto M.R., Higley M.J., Mineur Y.S. Acetylcholine as а Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior // Neuron. 2012. Vol. 76, № 1. Р. 116–129. https://doi.org/10.1016/j.neuron.2012.08.036

Ahmed N.Y., Knowles R., Dehorter N. New Insights into Cholinergic Neuron Diversity // Front. Mol. Neurosci. 2019. № 12. Art. № 204. https://doi.org/10.3389/fnmol.2019.00204

Rima M., Lattouf Y., Younes M.A., Bullier E., Legendre P., Mangin J.-M., Hong E. Dynamic Regulation of the Cholinergic System in the Spinal Central Nervous System // Sci. Rep. 2020. Vol. 10. Art. № 15338. https://doi.org/10.1038/s41598-020-72524-3

Bosmans G., Shimizu G., Florens M., Gonzalez-Dominguez E., Matteoli G., Boeckxstaens G.E. Cholinergic Modulation of Type 2 Immune Responses // Front. Immunol. 2017. Vol. 8. Art. № 1873. https://doi.org/10.3389/fimmu.2017.01873

Scott G.D., Fryer A.D. Role of Parasympathetic Nerves and Muscarinic Receptors in Allergy and Asthma // Chem. Immunol. Allergy. 2012. № 98. Р. 48–69. https://doi.org/10.1159/000336498

Saw E.L., Pearson J.T., Schwenke D.O., Munasinghe P.E., Tsuchimochi H., Rawal S., Coffey S., Davis P., Bunton R., Van Hout I., Kai Y., Williams M.J.A., Kakinuma Y., Fronius M., Katare R. Activation of the Cardiac NonNeuronal Cholinergic System Prevents the Development of Diabetes-Associated Cardiovascular Complications // Cardiovasc. Diabetol. 2021. Vol. 20, № 1. Art. № 50. https://doi.org/10.1186/s12933-021-01231-8

Eccles J.C., Fatt P., Koketsu K. Cholinergic and Inhibitory Synapses in a Pathway from Motor-Axon Collaterals to Motoneurones // J. Physiol. 1954. Vol. 126, № 3. Р. 524–562. https://doi.org/10.1113/jphysiol.1954.sp005226

Chen J., Mizushige T., Nishimune H. Active Zone Density Is Conserved During Synaptic Growth but Impaired in Aged Mice // J. Comp. Neurol. 2012. Vol. 520, № 2. Р. 434–452. https://doi.org/10.1002/cne.22764

Schiavo G., Stenbeck G., Rothman J.E., Söllner T.H. Binding of the Synaptic Vesicle v-SNARE, Synaptotagmin, to the Plasma Membrane t-SNARE, SNAP-25, Can Explain Docked Vesicles at Neurotoxin-Treated Synapses // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94, № 3. Р. 997–1001. https://doi.org/10.1073/pnas.94.3.997

White D.N., Stowell M.H.B. Room for Two: The Synaptophysin/Synaptobrevin Complex // Front. Synaptic Neurosci. 2021. Vol. 13. Art. № 740318. https://doi.org/10.3389/fnsyn.2021.740318

Krause M., Wernig A. The Distribution of Acetylcholine Receptors in the Normal and Denervated Neuromuscular Junction of the Frog // J. Neurocytol. 1985. Vol. 14, № 5. P. 765–780. https://doi.org/10.1007/BF01170827

Fujita A., Cheng J., Tauchi-Sato K., Takenawa T., Fujimoto T. A Distinct Pool of Phosphatidylinositol 4,5-Bisphosphate in Caveolae Revealed by a Nanoscale Labeling Technique // Proc. Natl. Acad. Sci. USA. 2009. Vol. 106, № 23. Р. 9256–9261. https://doi.org/10.1073/pnas.0900216106

Петров А.М., Зефиров А.Л. Холестерин и липидные плотики биологических мембран. Роль в секреции, рецепции и функционировании ионных каналов // Успехи физиол. наук. 2013. Т. 44, № 1. С. 17–38.

Gazzerro E., Sotgia F., Bruno C., Lisanti M.P., Minetti C. Caveolinopathies: From the Biology of Caveolin-3 to Human Diseases // Eur. J. Hum. Genet. 2010. Vol. 18, № 2. Р. 137–145. https://doi.org/10.1038/ejhg.2009.103

Hausser A., Schlett K. Coordination of AMPA Receptor Trafficking by Rab GTPases // Small GTPases. 2019. Vol. 10, № 6. Р. 419–432. https://doi.org/10.1080/21541248.2017.1337546

Zakany F., Kovacs T., Panyi G., Varga Z. Direct and Indirect Cholesterol Effects on Membrane Proteins with Special Focus on Potassium Channels // Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020. Vol. 1865, № 8. Art. № 158706. https://doi.org/10.1016/j.bbalip.2020.158706

Kravtsova V.V., Matchkov V.V., Bouzinova E.V., Vasiliev A.N., Razgovorova I.A., Heiny J.A., Krivoi I.I. IsoformSpecific Na,K-ATPase Alterations Precede Disuse-Induced Atrophy of Rat Soleus Muscle // Biomed. Res. Int. 2015. Vol. 2015. Art. № 720172. https://doi.org/10.1155/2015/720172

McHardy S.F., Wang H.L., McCowen S.V., Valdez M.C. Recent Advances in Acetylcholinesterase Inhibitors and Reactivators: An Update on the Patent Literature (2012–2015) // Expert Opin. Ther. Pat. 2017. Vol. 27, № 4. Р. 455–476. https://doi.org/10.1080/13543776.2017.1272571

Bonaz B., Sinniger V., Pellissier S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases // Front. Neurosci. 2021. Vol. 15. Art. № 650971. https://doi.org/10.3389/fnins.2021.650971

de Jonge W.J., Ulloa L. The Alpha7 Nicotinic Acetylcholine Receptor as a Pharmacological Target for Inflammation // Br. J. Pharmacol. 2007. Vol. 151, № 7. Р. 915–929. https://doi.org/10.1038/sj.bjp.0707264

Brenner H.R., Akaaboune M. Recycling of Acetylcholine Receptors at Ectopic Postsynaptic Clusters Induced by Exogenous Agrin in Living Rats // Dev. Biol. 2014. Vol. 394, № 1. Р. 122–128. https://doi.org/10.1016/j.ydbio.2014.07.018

Barrantes F.J. Cell-Surface Translational Dynamics of Nicotinic Acetylcholine Receptors // Front. Synaptic Neurosci. 2014. Vol. 6. Art. № 25. https://doi.org/10.3389/fnsyn.2014.00025

Karimi N., Okhovat A.A., Ziaadini B., Haghi Ashtiani B., Nafissi S., Fatehi F. Myasthenia Gravis Associated with Novel Coronavirus 2019 Infection: A Report of Three Cases // Clin. Neurol. Neurosurg. 2021. Vol. 208. Art. № 106834. https://doi.org/10.1016/j.clineuro.2021.106834

Alexandris N., Lagoumintzis G., Chasapis C.T., Leonidas D.D., Papadopoulos G.E., Tzartos S.J., Tsatsakis A., Eliopoulos E., Poulas K., Farsalinos K. Nicotinic Cholinergic System and COVID-19: In silico Evaluation of Nicotinic Acetylcholine Receptor Agonists as Potential Therapeutic Interventions // Toxicol. Rep. 2020. Vol. 8. P. 73–83. https://doi.org/10.1016/j.toxrep.2020.12.013

Bruneau E.G., Akaaboune M. The Dynamics of Recycled Acetylcholine Receptors at the Neuromuscular Junction in vivo // Development. 2006. Vol. 133, № 22. Р. 4485–4493. https://doi.org/10.1242/dev.02619

Lück G., Hoch W., Hopf C., Blottner D. Nitric Oxide Synthase (NOS-1) Coclustered with Agrin-Induced AChRSpecializations on Cultured Skeletal Myotubes // Mol. Cell. Neurosci. 2000. Vol. 16, № 3. Р. 269–281. https://doi.org/10.1006/mcne.2000.0873

Klyachko V.A., Ahern G.P., Jackson M.B. cGMP-Mediated Facilitation in Nerve Terminals by Enhancement of the Spike Afterhyperpolarization // Neuron. 2001. Vol. 31, № 6. Р. 1015–1025. https://doi.org/10.1016/s08966273(01)00449-4

Sayed N., Baskaran P., Ma X., van den Akker F., Beuve A. Desensitization of Soluble Guanylyl Cyclase, the NO Receptor, by S-Nitrosylation // Proc. Natl. Acad. Sci. USA. 2007. Vol. 104, № 30. Р. 12312–12317. https://doi.org/10.1073/pnas.0703944104

Проскурина С.Е. Влияние оксида азота (NO) на активность фермента ацетилхолинэстеразы в нервномышечном синапсе крысы: дис. … канд. биол. наук. Казань, 2016. 134 с.

Petrov K.A., Malomouzh A.I., Kovyazina I.V., Krejci E., Nikitashina A.D., Proskurina S.E., Zobov V.V., Nikolsky E.E. Regulation of Acetylcholinesterase Activity by Nitric Oxide in Rat Neuromuscular Junction via N-Methyl-D-Aspartate Receptor Activation // Eur. J. Neurosci. 2013. Vol. 37, № 2. Р. 181–189. https://doi.org/10.1111/ejn.12029

Rosas-Ballina M., Ochani M., Parrish W.R., Ochani K., Harris Y.T., Huston J.M., Chavan S., Tracey K.J. Splenic Nerve Is Required for Cholinergic Antiinflammatory Pathway Control of TNF in Endotoxemia // Proc. Natl. Acad. Sci. USA. 2008. Vol. 105, № 31. Р. 11008–11013. https://doi.org/10.1073/pnas.0803237105

Balez R., Ooi L. Getting to NO Alzheimer’s Disease: Neuroprotection versus Neurotoxicity Mediated by Nitric Oxide // Oxid. Med. Cell. Longev. 2016. Vol. 2016. Art. № 3806157. https://doi.org/10.1155/2016/3806157

Gilhus N.E., Tzartos S., Evoli A., Palace J., Burns T.M., Verschuuren J.J.G.M. Myasthenia Gravis // Nat. Rev. Dis. Primers. 2019. Vol. 5, № 1. Art. № 30. https://doi.org/10.1038/s41572-019-0079-y

Leoni V., Caccia C. The Impairment of Cholesterol Metabolism in Huntington Disease // Biochim. Biophys. Acta. 2015. Vol. 1851, № 8. Р. 1095–1105. https://doi.org/10.1016/j.bbalip.2014.12.018

Grajales-Reyes G.E., Báez-Pagán C.A., Zhu H., Grajales-Reyes J.G., Delgado-Vélez M., García-Beltrán W.F., Luciano C.A., Quesada O., Ramírez R., Gómez C.M., Lasalde-Dominicci J.A. Transgenic Mouse Model Reveals an Unsuspected Role of the Acetylcholine Receptor in Statin-Induced Neuromuscular Adverse Drug Reactions // Pharmacogenomics J. 2013. Vol. 13, № 4. Р. 362–368. https://doi.org/10.1038/tpj.2012.21

Crespi B., Alcock J. Conflicts Over Calcium and the Treatment of COVID-19 // Evol. Med. Public Health. 2021. Vol. 9, № 1. Р. 149–156. https://doi.org/10.1093/emph/eoaa046

Ramadan J.W., Steiner S.R., O’Neill C.M., Nunemaker C.S. The Central Role of Calcium in the Effects of Cytokines on Beta-Cell Function: Implications for Type 1 and Type 2 Diabetes // Cell Calcium. 2011. Vol. 50, № 6. P. 481–490. https://doi.org/10.1016/j.ceca.2011.08.005

Luciani D.S., Gwiazda K.S., Yang T.L., Kalynyak T.B., Bychkivska Y., Frey M.H., Jeffrey K.D., Sampaio A.V., Underhill T.M., Johnson J.D. Roles of IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death // Diabetes. 2009. Vol. 58, № 2. Р. 422–432. https://doi.org/10.2337/db07-1762

Berchtold M.W., Brinkmeier H., Müntener M. Calcium Ion in Skeletal Muscle: Its Crucial Role for Muscle Function, Plasticity, and Disease // Physiol. Rev. 2000. Vol. 80, № 3. P. 1215–1265. https://doi.org/10.1152/physrev.2000.80.3.1215

Guo T., Fan Y., Chen M., Wu X., Zhang L., He T., Wang H., Wan J., Wang X., Lu Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19) // JAMA Cardiol. 2020. Vol. 5, № 7. Р. 811–818. https://doi.org/10.1001/jamacardio.2020.1017

Arentz M., Yim E., Klaff L., Lokhandwala S., Riedo F.X., Chong M., Lee M. Characteristics and Outcomes of 21 Critically Ill Patients with COVID-19 in Washington State // JAMA. 2020. Vol. 323, № 16. Р. 1612–1614. https://doi.org/10.1001/jama.2020.4326

Dani M., Dirksen A., Taraborrelli P., Torocastro M., Panagopoulos D., Sutton R., Lim P.B. Autonomic Dysfunction in ‘Long COVID’: Rationale, Physiology and Management Strategies // Clin. Med. (Lond.). 2021. Vol. 21, № 1. Р. e63–e67. https://doi.org/10.7861/clinmed.2020-0896

Jung F., Krüger-Genge A., Franke R.P., Hufert F., Küpper J.H. COVID-19 and the Endothelium // Clin. Hemorheol. Microcirc. 2020. Vol. 75, № 1. Р. 7–11. https://doi.org/10.3233/ch-209007

Jardine D.L., Wieling W., Brignole M., Lenders J.W.M., Sutton R., Stewart J. The Pathophysiology of the Vasovagal Response // Heart Rhythm. 2018. Vol. 15, № 6. Р. 921–929. https://doi.org/10.1016/j.hrthm.2017.12.013

Chung S.A., Yuan H., Chung F. A Systemic Review of Obstructive Sleep Apnea and Its Implications for Anesthesiologists // Anesth. Analg. 2008. Vol. 107, № 5. Р. 1543–1563. https://doi.org/10.1213/ane.0b013e318187c83a

Monahan K.D. Effect of Aging on Baroreflex Function in Humans // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007. Vol. 293, № 1. Р. R3–R12. https://doi.org/10.1152/ajpregu.00031.2007

Загрузки

Опубликован

2024-05-17

Как цитировать

Муженя, Д. В. ., & Лысенков, С. П. . (2024). Роль ацетилхолиновой системы и ее компонентов в формировании постковидных синдромов (обзор). Журнал медико-биологических исследований, 12(2), 240–252. https://doi.org/10.37482/2687-1491-Z182