Correlation Between Ultrasound and Electrocardiographic Parameters of Intracardiac Haemodynamics Under Physical Load in Humans
DOI:
https://doi.org/10.37482/2687-1491-Z131Keywords:
mitral valve, aortic valve, stroke volume, cardiac output, ECG intervals and segments, intense physical load, heart ultrasound, electrical properties of the myocardiumAbstract
The purpose of this article was to study the mechanism of reduction in stroke volume after intense physical activity (the Astrand effect). Materials and methods. The research involved 23 apparently healthy male students of Syktyvkar State University named after Pitirim Sorokin (age: 19 ± 1 years, body weight: 75 ± 13 kg, height: 177 ± 7 cm, body mass index: 24 ± 4 kg/m2). The physical load consisted of the Stange test (voluntary inspiratory breath-holding) and the Martinet test (squats to failure) performed simultaneously. The parameters of intracardiac haemodynamics were assessed using electrocardiography and ultrasonography. Results. We established that at rest, about 80 cm3 of blood passes through the mitral valve and the aortic valve in a cardiac cycle lasting on average about 0.30 s. Under physical load, the total blood flow volume through the mitral valve is reduced by 8 %, while through the aortic valve, by 15 %. The decrease in stroke volume under physical load, accompanied by an increase in heart rate, is due to a reduction in the TP segment of the electrocardiogram (diastole). The free blood flow (during diastole) from the left atrium through the mitral valve stops and the forced flow (during systole) starts, coinciding in time with the PQ interval (left atrial systole) on the electrocardiogram. Changes in the subjects’ parameters associated with the flow dynamics through the mitral valve and further through the aortic valve, as well as the processes in the TP segment (diastole) indicate that it is the shortened diastole during exercise that serves as the main link in the mechanism of all subsequent rearrangements of intracardiac haemodynamics. This study contributes to the understanding of the mechanism of the Astrand effect. Moreover, it demonstrated the dependence of the diastolic function of the ventricles on the volume of free blood flow (during diastole) through the mitral valve during the contraction of the TP segment according to the electrocardiographic data.
Downloads
References
Иржак Л.И. Физиология митрального клапана взрослого человека при физической нагрузке // Физиология человека. 2006. Т. 32, № 5. С. 84–87.
Заборский О.С., Поскотинова Л.В. Реакция сердечно-сосудистой системы на скоростно-силовую нагрузку в условиях холода у юношей на возрастных этапах 14–15 и 15–16 лет // Журн. мед.-биол. исследований. 2022. Т. 10, № 2. С. 143–150. DOI: 10.37482/2687-1491-Z103
Romero S.A., Minson C.T., Halliwill J.R. The Cardiovascular System After Exercise // J. Appl. Physiol. (1885). 2017. Vol. 122, № 4. Р. 925–932. DOI: 10.1152/japplphysiol.00802.2016
Русских Н.Г., Иржак Л.И. Вариабельность элементов электрокардиограммы в ответ на ментальную пробу у юношей 18–19 лет // Журн. мед.-биол. исследований. 2018. Т. 6, № 1. С. 35–40. DOI: 10.17238/issn2542-1298.2018.6.1.35
Neufeld E.V., Carney J.J., Dolezal B.A., Boland D.M., Cooper C.B. Exploratory Study of Heart Rate Variability and Sleep Among Emergency Medical Services Shift Workers // Prehosp. Emerg. Care. 2017. Vol. 21, № 1. Р. 18–23. DOI: 10.1080/10903127.2016.1194928
McClean G., Riding N.R., Ardern C.L., Farooq A., Pieles G.E., Watt V., Adamuz C., George K.P., Oxborough D., Wilson M.G. Electrical and Structural Adaptations of the Paediatric Athlete’s Heart: A Systematic Review with Meta-Analysis // Br. J. Sports Med. 2018. Vol. 52, № 4. Art. № 230. DOI: 10.1136/bjsports-2016-097052
Åstrand P.-O., Cuddy T.E., Saltin B., Stenberg J. Cardiac Output During Submaximal and Maximal Work // J. Appl. Physiol. 1964. Vol. 19, № 2. P. 268–274. DOI: 10.1152/jappl.1964.19.2.268
Åstrand P.-O., Rodahl K., Dahl H.A., Strømme S.B. Textbook of Work Physiology. Physiological Bases of Exercise. Champaign: Human Kinetics, 2003. 650 p.
Дембо А.Г., Земцовский Э.В. Спортивная кардиология: рук. для врачей. Л.: Медицина, 1989. 464 с.
Noble A., Johnson R., Thomas A., Bass P. The Cardiovascular System: Basic Science and Clinical Conditions. Edinburgh: Elsevier, 2010. 184 p.
González-Fimbres R.A., Hernández-Cruz G., Flatt A.A. Ultrashort versus Criterion Heart Rate Variability Among International-Level Girls’ Field Hockey Players // Int. J. Sports Physiol. Perform. 2021. Vol. 16, № 7. P. 985–992. DOI: 10.1123/ijspp.2020-0362
Wilkenshoff U., Kruck I. Handbuch der Echokardiografie. Stuttgart: Thieme, 2017. 352 р.
Рудой А.С., Урываев А.М., Литвиненко А.М., Денещук Ю.С. Z-критерий, как оптимальный параметр оценки эхокардиографических размеров корня аорты в норме и патологии // Мед. журн. 2015. № 1. С. 132–139.
Спицин А.П., Кушкова Н.Е., Колодкина Е.В. Особенности центральной гемодинамики у лиц молодого возраста в зависимости от отличий фактической частоты сердечных сокращений // Здоровье населения и среда обитания – ЗНиСО. 2018. № 7(304). С. 27–30.