Effect of Dydrogesterone on the Oxytocin Reactivity of Venous Blood Neutrophils in Pregnant Women and Puerperae
DOI:
https://doi.org/10.37482/2687-1491-Z175Keywords:
dydrogesterone, oxytocin, radical activity of neutrophils, pregnant women, puerperaeAbstract
The ability of steroid hormones to modulate the binding of oxytocin to oxytocin receptors is of great interest. The purpose of this article was to study the effect of oxytocin, dydrogesterone and their mixture on the radical activity of venous blood neutrophils in pregnant women during the 3rd trimester of a normal pregnancy and in women on the 1st day after term delivery. Materials and methods. Using the chemiluminescent method (BChL-07 biochemiluminometer) and cell stimulation with latex particles, we studied non-genomic and genomic effects of dydrogesterone (5∙10–5 g/l), oxytocin (10–7 IU/l) and their mixture on the radical activity of venous blood neutrophils in 20 pregnant women in the 3rd trimester of a normal pregnancy and 10 women on the 1st day after term labour. When the noise level was automatically subtracted, the following were recorded: maximum intensity of the synthesis of reactive oxygen species, time to reach the maximum of synthesis intensity, and area under the chemiluminogram curve, reflecting the total synthesis of radical particles over the course of 30 min. Results. Baseline radical activity of neutrophils in women on the 1st day after term delivery was found to be three times higher than in women during the 3rd trimester of a normal pregnancy. Judging by the area under the chemiluminogram curve and maximum intensity of the synthesis of reactive oxygen species, oxytocin had an equal stimulating effect on venous blood neutrophils both in pregnant women during the 3rd trimester and in puerperae. Dydrogesterone in each group of women equally stimulated the radical activity of neutrophils, both non-genomically and genomically. In both groups, under the action of dydrogesterone through membrane receptors, oxytocin reactivity of neutrophils remained unchanged, while through nuclear receptors, it decreased. Possible mechanisms of progesterone’s involvement in the regulation of oxytocin reactivity of the myometrium and venous blood neutrophils in women during pregnancy and postpartum are considered.
Downloads
References
Григорьева М.Е., Голубева М.Г. Окситоцин: строение, синтез, рецепторы и основные эффекты // Нейрохимия. 2010. Т. 27, № 2. С. 93–101.
Горшков-Кантакузен В.А., Шпикалова М.А. Корреляции уровней окситоцина у детей разных этнических групп с аутизмом и расстройствами аутистического спектра // Бюл. науки и практики. 2016. Т. 12, № 13. C. 171–178. https://doi.org/10.5281/zenodo.205202
Тепляшина Е.А., Лопатина О.Л., Екимова М.В., Пожиленкова Е.А., Салмина А.Б. Роль окситоцина и окситоциновых рецепторов в регуляции репродуктивных функций и фолликулогенеза // Сиб. мед. журн. 2013. № 8. С. 21–26.
Alotaibi M.F. The Response of Rat and Human Uterus to Oxytocin from Different Gestational Stages in vitro // Gen. Physiol. Biophys. 2017. Vol. 36, № 1. Р. 75–82. https://doi.org/10.4149/gpb_2016022
Arrowsmith S., Wray S. Oxytocin: Its Mechanism of Action and Receptor Signalling in the Myometrium // J. Neuroendocrinol. 2014. Vol. 26, № 6. Р. 356–369. https://doi.org/10.1111/jne.12154
Циркин В.И., Анисимов К.Ю., Безмельцева О.М., Бушкова Е.Н., Братухина О.А., Дмитриева С.Л., Черепанова Т.В. Окситоцинореактивность эритроцитов беременных женщин и рожениц и влияние на нее атозибана и дидрогестерона // Вестн. Урал. мед. акад. науки. 2017. Т. 14, № 4. С. 399–413.
Bishop C.V., Stormshak F. Nongenomic Action of Progesterone Inhibits Oxytocin-Induced Phosphoinositide Hydrolysis and Prostaglandin F2α Secretion in the Ovine Endometrium // Endocrinology. 2006. Vol. 147, № 2. P. 937–942. https://doi.org/10.1210/en.2005-0869
Bishop C.V. Progesterone Inhibition of Oxytocin Signaling in Endometrium // Front. Neurosci. 2013. Vol. 7. Art. № 138. https://doi.org/10.3389/fnins.2013.00138
Patil A.S., Swamy G.K., Murtha A.P., Heine R.P., Zheng X., Grotegut C.A. Progesterone Metabolites Produced by Cytochrome P450 3A Modulate Uterine Contractility in a Murine Model // Reprod. Sci. 2015. Vol. 22, № 12. P. 1577–1586. https://doi.org/10.1177/1933719115589414
Циркин В.И., Трухина С.И., Трухин А.Н., Анисимов К.Ю. Окситоциновые рецепторы (обзор литературы). Часть 2 // Вестн. Урал. мед. акад. науки. 2018. Т. 15, № 4. C. 625–640.
Патурова И.Г., Полежаева Т.В., Худяков А.Н., Соломина О.Н., Безмельцева О.М., Братухина О.А., Циркин В.И. Способность гинипрала изменять негеномное влияние дидрогестерона на свободнорадикальную активность нейтрофилов женщин на разных этапах репродукции // Журн. мед.-биол. исследований. 2017. Т. 5, № 4. С. 31–41. https://doi.org/10.17238/issn2542-1298.2017.5.4.31
Панасенко Л.М., Краснова Е.И., Ефремов А.В. Клиническое значение хемилюминесцентного ответа лейкоцитов крови при коклюше // Бюл. Сиб. отд-ния РАМН. 2005. № 3(117). С. 44–47.
Патурова И.Г., Полежаева Т.В., Худяков А.Н., Безмельцева О.М., Сергушкина М.И., Братухина О.А., Дмитриева С.Л., Циркин В.И. Негеномное и геномное влияния дидрогестерона на адренореактивность нейтрофилов рожениц и женщин с угрозой преждевременных родов // Рос. физиол. журн. им И.М. Сеченова. 2018. Т. 104, № 4. С. 506–514.
Arrowsmith S., Neilson J., Wray S. The Combination Tocolytic Effect of Magnesium Sulfate and an Oxytocin Receptor Antagonist in Myometrium from Singleton and Twin Pregnancies // Am. J. Obstet. Gynecol. 2016. Vol. 215, № 6. Р. 789.e1–789.e9. https://doi.org/10.1016/j.ajog.2016.08.015
Renthal N.E., Williams K.C., Mendelson C.R. MicroRNAs – Mediators of Myometrial Contractility During Pregnancy and Labour // Nat. Rev. Endocrinol. 2013. Vol. 9, № 7. Р. 391–401. https://doi.org/10.1038/nrendo.2013.96
Luppi P., Irwin T.E., Simhan H., DeLoia J.A. CD11b Expression on Circulating Leukocytes Increases in Preparation for Parturition // Am. J. Reprod. Immunol. 2004. Vol. 52, № 5. Р. 323–329. https://doi.org/10.1111/j.1600-0897.2004.00229.x
Yuan M., Jordan F., McInnes I.B., Harnett M.M., Norman J.E. Leukocytes Are Primed in Peripheral Blood for Activation During Term and Preterm Labour // Mol. Hum. Reprod. 2009. Vol. 15, № 11. Р. 713–724. http://dx.doi.org/10.1093/molehr/gap054
Mehdi S.F., Pusapati S., Khenhrani R.R., Farooqi M.S., Sarwar S., Alnasarat A., Mathur N., Metz C.N., LeRoith D., Tracey K.J., Yang H., Brownstein M.J., Roth J. Oxytocin and Related Peptide Hormones: Candidate Anti-Inflammatory Therapy in Early Stages of Sepsis // Front. Immunol. 2022. Vol. 13. Art. № 864007. https://doi.org/10.3389/fimmu.2022.864007
Szeto A., Cecati M., Ahmed R., McCabe P.M., Mendez A.J. Oxytocin Reduces Adipose Tissue Inflammation in Obese Mice // Lipids Health Dis. 2020. Vol. 19, № 1. Art. № 188. https://doi.org/10.1186/s12944-020-01364-x
Jankowski M., Broderick T.L., Gutkowska J. Oxytocin and Cardioprotection in Diabetes and Obesity // BMC Endocr. Disord. 2016. Vol. 16, № 1. Art. № 34. https://doi.org/10.1186/s12902-016-0110-1
Szeto A., Rossetti M.A., Mendez A.J., Noller C.M., Herderick E.E., Gonzales J.A., Schneiderman N., McCabe P.M. Oxytocin Administration Attenuates Atherosclerosis and Inflammation in Watanabe Heritable Hyperlipidemic Rabbits // Psychoneuroendocrinology. 2013. Vol. 38, № 5. P. 685–693. https://doi.org/10.1016/j.psyneuen.2012.08.009