Mechanisms of Serotonin Effects on Physical Performance: A Descriptive Review
DOI:
https://doi.org/10.37482/2687-1491-Z168Keywords:
serotonin, physical fatigue, physical performance, muscles, physiological mechanisms, biochemical reactionsAbstract
It has been proven that both central and peripheral fatigue contributes to а decrease in physical performance. Physical activity causes biochemical changes in the body. One of the most important factors causing biochemical changes and leading to fatigue is the accumulation of extracellular serotonin in both the blood and the brain during exercise. It is a hormone whose concentration increases with physical activity. This paper describes the basic mechanisms of serotonin synthesis, its contradictory effects on motor neurons and its direct impact on the structure of muscle tissue. An extensive literature search was conducted among publications in the PubMed database for the period from its launch to 2022 using the query effects of serotonin on physical performance and the following keywords: serotonin, physical fatigue, physical performance, muscles. The subject search was expanded to obtain additional information and define common terms. As a result, 82 records were found, while additional 25 studies were selected manually, describing the effects of serotonin on physical performance both by the site of action and by the mechanisms of its formation. Selection was based on the healthy people and animals criterion, but was not limited by the language or type of publication. The results include article reviews, reports and abstracts of scientific papers. References to studies on the topic of interest in the works were considered to identify additional publications.
Downloads
References
Фудин Н.А., Еськов В.М., Филатова О.Е., Зилов В.Г., Борисова О.Н., Козлова В.В. Утомление человека при статической и динамической физической нагрузке и механизмы адаптации // Вестн. новых мед. технологий. Электрон. изд. 2015. № 1. Ст. № 2-1. https://doi.org/10.12737/7589
Cordeiro L.M.S., Rabelo P.C.R., Moraes M.M., Teixeira-Coelho F., Coimbra C.C., Wanner S.P., Soares D.D. Physical Exercise-Induced Fatigue: The Role of Serotonergic and Dopaminergic Systems // Braz. J. Med. Biol. Res. 2017. Vol. 50, № 12. Art. №. e6432. https://doi.org/10.1590/1414-431X20176432
Kwak J.J., Yook J.S., Ha M.S. Potential Biomarkers of Peripheral and Central Fatigue in High-Intensity Trained Athletes at High-Temperature: A Pilot Study with Momordica charantia (Bitter Melon) // J. Immunol. Res. 2020. Vol. 2020. Art. № 4768390. https://doi.org/10.1155/2020/4768390
Meeusen R., Watson P., Hasegawa H., Roelands B., Piacentini M.F. Central Fatigue: The Serotonin Hypothesis and Beyond // Sports Med. 2007. Vol. 36, № 10. P. 881–909. https://doi.org/10.2165/00007256-200636100-00006
Nybo L., Secher N.H. Cerebral Perturbations Provoked by Prolonged Exercise // Prog. Neurobiol. 2004. Vol. 72, № 4. P. 223–261. https://doi.org/10.1016/j.pneurobio.2004.03.005
McKenna M.J., Hargreaves M. Resolving Fatigue Mechanisms Determining Exercise Performance: Integrative Physiology at Its Finest! // J. Appl. Physiol. 2008. Vol. 104, № 1. P. 286–287. https://doi.org/10.1152/japplphysiol.01139.2007
Zając A., Chalimoniuk M., Maszczyk A., Gołaś A., Lngfort J. Central and Peripheral Fatigue During Resistance Exercise – A Critical Review // J. Hum. Kinet. 2015. Vol. 49. P. 159–169.
Исмайылов Ю.Б., Алиев С.Я. Влияния физической нагрузки различной интенсивности на активность серотонина в крови у волейболисток // Вестн. Моск. гос. обл. ун-та. Сер.: Естеств. науки. 2014. № 1. С. 57−62.
Kocahan S., Dundar A., Onderci M., Yilmaz Y. Investigation of the Effect of Training on Serotonin, Melatonin and Hematologic Parameters in Adolescent Basketball Players // Horm. Mol. Biol. Clin. Investig. 2021. Vol. 42, № 4. P. 383–388. https://doi.org/10.1515/hmbci-2020-0095
Perrier J.-F. If Serotonin Does Not Exhaust You, It Makes You Stronger // J. Physiol. 2019. Vol. 597, № 1. P. 5–6. https://doi.org/10.1113/JP277317
Alberghina D., Giannetto C., Piccione G. Peripheral Serotoninergic Response to Physical Exercise in Athletic Horses // J. Vet. Sci. 2010. Vol. 11, № 4. P. 285–289. https://doi.org/10.4142/jvs.2010.11.4.285
Medica P., Giunta R.P., Bruschetta G., Ferlazzo A.M. The Influence of Training and Simulated Race on Horse Plasma Serotonin Levels // J. Equine Vet. Sci. 2020. Vol. 84. Art. № 102818. https://doi.org/10.1016/j.jevs.2019.102818
Musumeci G., Imbesi R., Trovato F.M., Szychlinska M.A., Aiello F.C., Buffa P., Castrogiovanni P. Importance of Serotonin (5-HT) and Its Precursor L-Tryptophan for Homeostasis and Function of Skeletal Muscle in Rats. A Morphological and Endocrinological Study // Acta Histochem. 2015. Vol. 117, № 3. P. 267–274. https://doi.org/10.1016/j.acthis.2015.03.003
Yamashita M. Potential Role of Neuroactive Tryptophan Metabolites in Central Fatigue: Establishment of the Fatigue Circuit // Int. J. Tryptophan Res. 2020. Vol. 13. Art. № 1178646920936279. https://doi.org/10.1177/1178646920936279
Ruchala I., Cabra V., Solis E. Jr., Glennon R.A., De Felice L.J., Eltit J.M. Electrical Coupling Between the Human Serotonin Transporter and Voltage-Gated Ca2+ Channels // Cell Calcium. 2014. Vol. 56, № 1. P. 25–33. https://doi.org/10.1016/j.ceca.2014.04.003
Калинина Н.И., Зайцев А.В., Веселкин Н.П. Агонисты 5-НТ1 и 5-НТ2-рецепторов по-разному модулируют возбудимость мотонейронов спинного мозга лягушки // Журн. эволюц. биохимии и физиологии. 2019. Т. 55, № 4. С. 255–262. https://doi.org/10.1134/S0044452919040065
Colgan L.A., Cavolo S.L., Commons K.G., Levitan E.S. Action Potential-Independent and Pharmacologically Unique Vesicular Serotonin Release from Dendrites // J. Neurosci. 2012. Vol. 32, № 45. P. 15737–15746. https://doi.org/10.1523/JNEUROSCI.0020-12.2012
Kavanagh J.J., McFarland A.J., Taylor J.L. Enhanced Availability of Serotonin Increases Activation of Unfatigued Muscle but Exacerbates Central Fatigue During Prolonged Sustained Contractions // J. Physiol. 2019. Vol. 597, № 1. P. 319–332. https://doi.org/10.1113/JP277148
Falabrègue M., Boschat A.-C., Jouffroy R., Derquennes M., Djemai H., Sanquer S., Barouki R., Coumoul X., Toussaint J.-F., Hermine O., Noirez P., Côté F. Lack of Skeletal Muscle Serotonin Impairs Physical Performance // Int. J. Tryptophan Res. 2021. Vol. 14. Art. № 11786469211003109. https://doi.org/10.1177/11786469211003109
Strüder H.K., Hollmann W., Platen P., Donike M., Gotzmann A., Weber K. Influence of Paroxetine, BranchedChain Amino Acids and Tyrosine on Neuroendocrine System Responses and Fatigue in Humans // Horm. Metab. Res. 1998. Vol. 30, № 4. P. 188–194. https://doi.org/10.1055/s-2007-978864
Perrier J.-F., Delgado-Lezama R. Synaptic Release of Serotonin Induced by Stimulation of the Raphe Nucleus Promotes Plateau Potentials in Spinal Motoneurons of the Adult Turtle // J. Neurosci. 2005. Vol. 25, № 35. P. 7993–7999. https://doi.org/10.1523/JNEUROSCI.1957-05.2005
Ахметова М.Ж., Нигматуллина Р.Р., Миндубаева Ф.А. Влияние серотонина на время сокращения миокарда у крысят с избытком серотонина в эмбриональном периоде // Рос. кардиол. журн. 2021. Т. 26, № S5. С. 32–33. https://doi.org/10.15829/1560-4071-2021-5S
Нигматуллина Р.Р., Садыкова Д.И., Афлятумова Г.Н., Чибирева М.Д. Серотонин, оксид азота и эндотелин-1 крови как ранние маркеры артериальной гипертензии у неполовозрелых крысят // Фундаментальная и клиническая электрофизиология сердца. Актуальные вопросы аритмологии: материалы II Всерос. науч.-практ. конф. с междунар. участием, посвящ. А.Ф. Самойлову. Казань, 2018. С. 39–40.
Al-Zoairy R., Pedrini M.T., Khan M.I., Engl J., Tschoner A., Ebenbichler C., Niederwanger A. Serotonin Improves Glucose Metabolism by Serotonylation of the Small GTPase Rab4 in L6 Skeletal Muscle Cells // Diabetol. Metab. Syndr. 2017. Vol. 9, № 1. https://doi.org/10.1186/s13098-016-0201-1
Нигмaтуллинa Р.Р., Нeдoрeзoвa Р.С. Влияние блокатора кальциевых каналов L-типа метоксиверапамила на инотропную функцию миокарда крысят с измененным метаболизмом серотонина // Рос. кардиол. журн. 2022. Т. 27, № S5. С. 49–50. https://doi.org/10.15829/1560-4071-2022-5S