Activity of Antioxidant Enzymes in Wistar and SHR Rats on a High-Calorie Diet

Authors

DOI:

https://doi.org/10.37482/2687-1491-Z202

Keywords:

high-calorie diet, overweight, antioxidant defence system, catalase, superoxide dismutase, glutathione peroxidase, genetic predisposition to cardiovascular disease

Abstract

Over the last decades, the dietary pattern of the population has undergone changes, including a significant increase in the consumption of high-calorie food. The purpose of this study was to investigate the activity of antioxidant enzymes in rats with and without genetic predisposition to cardiovascular disease eating a high-calorie diet. Materials and мethods. Wistar (n = 30) and SHR rats (n = 30; predisposed to cardiovascular disease) were used. Animals of both strains were subdivided into two groups: control (basic diet) and experimental (high-calorie diet). Parameters of carbohydrate and lipid metabolism were determined using a biochemistry analyser; haematological analysis was performed in order to establish the type of nonspecific adaptive response of the body. The state of the antioxidant system was evaluated using the animals’ blood serum and liver homogenate by determining catalase, superoxide dismutase and glutathione peroxidase activity. Results. High-calorie diet led to excessive body weight, changes in lipid profile, impaired glucose tolerance and inadequate adaptive response of the functional systems (manifested in the strain on the adaptive mechanisms and maladaptation) as well as to depletion of antioxidant enzymes in rats of both experimental groups. The parameters of animals with and without genetic predisposition to cardiovascular disease were found to be virtually identical. Despite the fact that genetic factors contribute significantly to the development of metabolic pathologies, the results obtained in the group of Wistar rats confirm that excessive caloric intake is one of the major causes of metabolic disorders.

Downloads

Download data is not yet available.

References

Коденцова В.М., Вржесинская О.А., Рисник Д.В., Никитюк Д.Б., Тутельян В.А. Обеспеченность населения России микронутриентами и возможности ее коррекции. Состояние проблемы // Вопр. питания. 2017. Т. 86, № 4. С. 113–124. https://doi.org/10.24411/0042-8833-2017-00067

Hruby A., Hu F.B. The Epidemiology of Obesity: A Big Picture // PharmacoEconomics. 2015. Vol. 33, № 7. P. 673–689. https://doi.org/10.1007/s40273-014-0243-x

Muoio D.M. Metabolic Inflexibility: When Mitochondrial Indecision Leads to Metabolic Gridlock // Cell. 2014. Vol. 159, № 6. P. 1253–1262. https://doi.org/10.1016/j.cell.2014.11.034

Knaus U.G. Oxidants in Physiological Processes // Reactive Oxygen Species: Network Pharmacology and Therapeutic Applications / ed. by H.H.H.W. Schmidt, P. Ghezzi, A. Cuadrado. Cham: Springer, 2021. P. 27–47. https://doi.org/10.1007/164_2020_380

Chao H.-W., Chao S.-W., Lin H., Ku H.-C., Cheng C.-F. Homeostasis of Glucose and Lipid in Non-Alcoholic Fatty Liver Disease // Int. J. Mol. Sci. 2019. Vol. 20, № 2. Art. № 298. https://doi.org/10.3390/ijms20020298

Heianza Y., Qi L. Gene-Diet Interaction and Precision Nutrition in Obesity // Int. J. Mol. Sci. 2017. Vol. 18, № 4. Art. № 787. https://doi.org/10.3390/ijms18040787

Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S., Watkins B.A., O’Keefe J.H., Brand-Miller J. Origins and Evolution of the Western Diet: Health Implications for the 21st Century // Am. J. Clin. Nutr. 2005. Vol. 81, № 2. P. 341–354. https://doi.org/10.1093/ajcn.81.2.341

Jagannathan R., Neves J.S., Dorcely B., Chung S.T., Tamura K., Rhee M., Bergman M. The Oral Glucose Tolerance Test: 100 Years Later // Diabetes Metab. Syndr. Obes. 2020. Vol. 13. P. 3787–3805. https://doi.org/10.2147/DMSO.S246062

Klop B., Elte J.W.F., Cabezas M.C. Dyslipidemia in Obesity: Mechanisms and Potential Targets // Nutrients. 2013. Vol. 5, № 4. Р. 1218–1240. https://doi.org/10.3390/nu5041218

Нотова С.В., Кван О.В., Мирошников С.В. Особенности элементного статуса при некоторых неспецифических реакциях адаптации (повышенной активации и переактивации) // Вестн. ОГУ. 2011. Т. 134, № 15. С. 88–90.

Clyburn C., Carson K.E., Smith C.R., Travagli R.A., Browning K.N. Brainstem Astrocytes Control Homeostatic Regulation of Caloric Intake // J. Physiol. 2023. Vol. 601, № 4. P. 801–829. https://doi.org/10.1113/JP283566

Carocho M., Ferreira I.C.F.R. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives // Food Chem. Toxicol. 2013. Vol. 51. P. 15–25. https://doi.org/10.1016/j.fct.2012.09.021

Prince M.R.U., Zihad S.M.N.K., Ghosh P., Sifat N., Rouf R., Al Shajib G.M., Alam M.A., Shilpi J.A., Uddin S.J. Amaranthus spinosus Attenuated Obesity-Induced Metabolic Disorders in High-Carbohydrate-High-Fat Diet-Fed Obese Rats // Front. Nutr. 2021. Vol. 8. Art. № 653918. https://doi.org/10.3389/fnut.2021.653918

Published

2024-10-02

How to Cite

Notova С. В., Marshinskaia О. В., & Kazakova Т. В. (2024). Activity of Antioxidant Enzymes in Wistar and SHR Rats on a High-Calorie Diet. Journal of Medical and Biological Research, 12(3), 319–328. https://doi.org/10.37482/2687-1491-Z202