Low-Intensity Resistance Training with Blood Flow Restriction Improves Metabolic Parameters in Men with Metabolic Syndrome
DOI:
https://doi.org/10.37482/2687-1491-Z149Keywords:
blood flow restriction training, low-intensity resistance training, men with metabolic syndrome, impaired glucose toleranceAbstract
Resistance training with blood flow restriction using inflatable cuffs or elastic bands produces a partial occlusion of the vessels of the exercising muscles. Compared to high-intensity resistance training, blood flow restriction training markedly reduces the mechanical load, while causing a similar increase in muscle mass and strength. Thus, this method is an effective training protocol for people with disabilities. Recent studies have shown that blood flow restriction training has beneficial effects on glucose metabolism and promotes mitochondrial biogenesis. Therefore, it can be considered as a valuable alternative to exercise for people with metabolic syndrome, a disorder characterized by impaired glucose metabolism, decreased skeletal muscle mass and progressive sarcopenia. The purpose of this research was to evaluate the effect of low-intensity resistance training with blood flow restriction on the metabolic parameters in men with metabolic syndrome. Materials and methods. The study involved 45 non-exercising men (mean age 35.2 ± 6.4 years) with metabolic syndrome. The participants were divided into three groups: low-intensity resistance training with blood flow restriction; high-intensity resistance training without blood flow restriction; low-intensity resistance training without blood flow restriction. Before and after the training course (12 weeks), blood plasma levels of glucose, triglycerides and high-density lipoproteins were assessed, as well as systolic blood pressure, waist circumference and metabolic syndrome severity z-score. Results. A statistically significant (p ˂ 0.05) decrease in all parameters was found in the groups of low-intensity resistance training with blood flow restriction and high-intensity resistance training. In the group of low-intensity resistance training without blood flow restriction, no statistically significant changes were identified (p ˃ 0.05). Thus, the research found that low-intensity resistance training with blood flow restriction improves the metabolic profile of men with metabolic syndrome and can, therefore, be used to prevent and treat metabolic disorders.
Downloads
References
Sperling L.S., Mechanick J.I., Neeland I.J., Herrick C.J., Després J.P., Ndumele C.E., Vijayaraghavan K., Handelsman Y., Puckrein G.A., Araneta M.R., et al. The CardioMetabolic Health Alliance: Working Toward a New Care Model for the Metabolic Syndrome // J. Am. Coll. Cardiol. 2015. Vol. 66, № 9. P. 1050–1067. DOI: 10.1016/j. jacc.2015.06.1328
Huh J.H., Ahn S.G., Kim Y.I., Go T., Sung K.C., Choi J.H., Koh K.K., Kim J.Y. Impact of Longitudinal Changes in Metabolic Syndrome Status over 2 Years on 10-Year Incident Diabetes Mellitus // Diabetes Metab. J. 2019. Vol. 43, № 4. P. 530–538. DOI: 10.4093/dmj.2018.0111
Käräjämäki A.J., Korkiakoski A., Hukkanen J., Kesäniemi Y.A., Ukkola O. Long-Term Metabolic Fate and Mortality in Obesity Without Metabolic Syndrome // Ann. Med. 2022. Vol. 54, № 1. P. 1432–1443. DOI: 10.1080/07853890.2022.2075915
Ahmadinezhad M., Arshadi M., Hesari E., Sharafoddin M., Azizi H., Khodamoradi F. The Relationship Between Metabolic Syndrome and Its Components with Bladder Cancer: A Systematic Review and Meta-Analysis of Cohort Studies // Epidemiol. Health. 2022. Vol. 44. Art. № e2022050. DOI: 10.4178/epih.e2022050
Du W., Guo K., Jin H., Sun L., Ruan S., Song Q. Association Between Metabolic Syndrome and Risk of Renal Cell Cancer: A Meta-Analysis // Front. Oncol. 2022. Vol. 12. Art. № 928619. DOI: 10.3389/fonc.2022.928619
Saklayen M.G. The Global Epidemic of the Metabolic Syndrome // Curr. Hypertens. Rep. 2018. Vol. 20, № 2. Art. № 12. DOI: 10.1007/s11906-018-0812-z
Avogaro A. Treating Diabetes Today with Gliclazide MR: A Matter of Numbers // Diabetes Obes. Metab. 2012. Vol. 14, suppl. 1. P. 14–19. DOI: 10.1111/j.1463-1326.2011.01508.x
Kim J.H., Cha J.-J., Lim S., An J., Kim M.-N., Hong S.J., Joo H.J., Park J.H., Yu C.W., Lim D.-S., Byeon K., Kim S.-W., Shin E.-S., Cha K.S., Chae J.K., Ahn Y., Jeong M.H., Ahn T.H. Target Low-Density Lipoprotein-Cholesterol and Secondary Prevention for Patients with Acute Myocardial Infarction: A Korean Nationwide Cohort Study // J. Clin. Med. 2022. Vol. 11, № 9. Art. № 2650. DOI: 10.3390/jcm11092650
Peña A., Olson M.L., Hooker E., Ayers S.L., Castro F.G., Patrick D.L., Corral L., Lish E., Knowler W.C., Shaibi G.Q. Effects of a Diabetes Prevention Program on Type 2 Diabetes Risk Factors and Quality of Life Among Latino Youths with Prediabetes: A Randomized Clinical Trial // JAMA Netw. Open. 2022. Vol. 5, № 9. Art. № e2231196. DOI: 10.1001/jamanetworkopen.2022.31196
Ooi T.C., Mat Ludin A.F., Loke S.C., Fiatarone Singh M.A., Wong T.W., Vytialingam N., Anthony Abdullah M.M.J., Ng O.C., Bahar N., Zainudin N., Lew L.C. A 16-Week Home-Based Progressive Resistance Tube Training Among Older Adults with Type-2 Diabetes Mellitus: Effect on Glycemic Control // Gerontol. Geriatr. Med. 2021. Vol. 7. Art. № 23337214211038789. DOI: 10.1177/23337214211038789
Colberg S.R., Sigal R.J., Yardley J.E., Riddell M.C., Dunstan D.W., Dempsey P.C., Horton E.S., Castorino K., Tate D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association // Diabetes Care. 2016. Vol. 39, № 11. P. 2065–2079. DOI: 10.2337/dc16-1728
Lind L., Sundström J., Ärnlöv J., Risérus U., Lampa E. A Longitudinal Study over 40 Years to Study the Metabolic Syndrome as a Risk Factor for Cardiovascular Diseases // Sci. Rep. 2021. Vol. 11, № 1. Art. № 2978. DOI: 10.1038/s41598-021-82398-8
Min J., Chang J.S., Choi J.Y., Kong I.D. Association Between Skeletal Muscle Mass, Physical Activity, and Metabolic Syndrome: The Korean National Health and Nutrition Examination Survey 2008–2011 // Metab. Syndr. Relat. Disord. 2022. Vol. 20, № 3. P. 156–165. DOI: 10.1089/met.2021.0080
Samuel V.T., Shulman G.I. The Pathogenesis of Insulin Resistance: Integrating Signaling Pathways and Substrate Flux // J. Clin. Invest. 2016. Vol. 126, № 1. P. 12–22. DOI: 10.1172/JCI77812
Williams M.A., Haskell W.L., Ades P.A., Amsterdam E.A., Bittner V., Franklin B.A., Gulanick M., Laing S.T., Stewart K.J. Resistance Exercise in Individuals with and Without Cardiovascular Disease: 2007 Update: A Scientific Statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism // Circulation. 2007. Vol. 116, № 5. P. 572–584. DOI: 10.1161/CIRCULATIONAHA.107.185214
Проект рекомендаций экспертов Российского кардиологического общества по диагностике и лечению метаболического синдрома. Третий пересмотр. М., 2013. URL: https://docs.yandex.ru/docs/view?tm=1685958734&tld=ru&lang=ru&name=projectrecomMS.doc&text=%D0%...scardio.ru%2Fcontent%2FGuidelines%2FprojectrecomMS.doc…BE%25D0%25 (дата обращения: 05.06.2023).
Zhou Y., Wu W., Zou Y., Huang W., Lin S., Ye J., Lan Y. Benefits of Different Combinations of Aerobic and Resistance Exercise for Improving Plasma Glucose and Lipid Metabolism and Sleep Quality Among Elderly Patients with Metabolic Syndrome: A Randomized Controlled Trial // Endocr. J. 2022. Vol. 69, № 7. P. 819–830. DOI: 10.1507/endocrj.EJ21-0589
Liang M., Pan Y., Zhong T., Zeng Y., Cheng A.S.K. Effects of Aerobic, Resistance, and Combined Exercise on Metabolic Syndrome Parameters and Cardiovascular Risk Factors: A Systematic Review and Network Meta-Analysis // Rev. Cardiovasc. Med. 2021. Vol. 22, № 4. P. 1523–1533. DOI: 10.31083/j.rcm2204156
Kwon D.H., Cho Y.G., Park H.A., Koo H.S. The Difference in the Prevalence of Metabolic Syndrome According to Meeting Guidelines for Aerobic Physical Activity and Muscle-Strengthening Exercise: A Cross-Sectional Study Performed Using the Korea National Health and Nutrition Examination Survey, 2014–2019 // Nutrients. 2022. Vol. 14, № 24. Art. № 5391. DOI: 10.3390/nu14245391
Elsangedy H.M., Machado D.G.D.S., Krinski K., Nascimento P.H.D., Oliveira G.T.A., Santos T.M., Hargreaves E.A., Parfitt G. Let the Pleasure Guide Your Resistance Training Intensity // Med. Sci. Sports Exerc. 2018. Vol. 50, № 7. P. 1472–1479. DOI: 10.1249/MSS.0000000000001573
Lixandrão M.E., Ugrinowitsch C., Berton R., Vechin F.C., Conceição M.S., Damas F., Libardi C.A., Roschel H. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis // Sports Med. 2018. Vol. 48, № 2. Р. 361–378. DOI: 10.1007/s40279-017-0795-y
Saatmann N., Zaharia O.-P., Loenneke J.P., Roden M., Pesta D.H. Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes // Trends Endocrinol. Metab. 2021. Vol. 32, № 2. P. 106–117. DOI: 10.1016/j.tem.2020.11.010
Alberti K.G., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.C., James W.P., Loria C.M., Smith S.C. Jr. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity // Circulation. 2009. Vol. 120, № 16. P. 1640–1645. DOI: 10.1161/CIRCULATIONAHA.109.192644
LeSuer D.A., McCormick J.H., Mayhew J.L., Wasserstein R.L., Arnold M.D. The Accuracy of Prediction Equations for Estimating 1-RM Performance in the Bench Press, Squat, and Deadlift // J. Strength Cond. Res. 1997. Vol. 11, № 4. P. 211–213.
Freitas E.D.S., Galletti B.R.A., Koziol K.J., Miller R.M., Heishman A.D., Black C.D., Bemben D., Bemben M.G. The Acute Physiological Responses to Traditional vs. Practical Blood Flow Restriction Resistance Exercise in Untrained Men and Women // Front. Physiol. 2020. Vol. 11. Art. № 577224. DOI: 10.3389/fphys.2020.577224
Freitas E.D.S., Miller R.M., Heishman A.D., Ferreira-Júnior J.B., Araújo J.P., Bemben M.G. Acute Physiological Responses to Resistance Exercise with Continuous Versus Intermittent Blood Flow Restriction: A Randomized Controlled Trial // Front. Physiol. 2020. Vol. 11. Art. № 132. DOI: 10.3389/fphys.2020.00132
DeBoer M.D., Gurka M.J. Clinical Utility of Metabolic Syndrome Severity Scores: Considerations for Practitioners // Diabetes Metab. Syndr. Obes. 2017. Vol. 10. P. 65–72. DOI: 10.2147/DMSO.S101624
Moon H.E., Lee T.S., Chung T.-H. Association Between Lower-to-Upper Ratio of Appendicular Skeletal Muscle and Metabolic Syndrome // J. Clin. Med. 2022. Vol. 11, № 21. Art. № 6309. DOI: 10.3390/jcm11216309
Сверчков В.В., Быков Е.В. Мышечная сила и тяжесть метаболического синдрома // Олимпийский спорт и спорт для всех: материалы XXVI Междунар. науч. конгр. (Казань, 8–11 сент. 2021 г.) / под общ. ред. Р.Т. Бурганова. Казань, 2021. С. 409–411.
Сверчков В.В., Быков Е.В. Влияние низкоинтенсивных силовых тренировок с ограничением кровотока на динамику силовых способностей у лиц с метаболическим синдромом // Проблемы подготовки научных и научно-педагогических кадров: опыт и перспективы: сб. науч. тр. молодых ученых, посвящ. Дню рос. науки / Урал. гос. ун-т физ. культуры. Вып. 19. Челябинск, 2022. С. 177–184.
McPherron A.С., Lee S.-J. Suppression of Body Fat Accumulation in Myostatin-Deficient Mice // J. Clin. Invest. 2002. Vol. 109, № 5. P. 595–601. DOI: 10.1172/JCI13562
Guo T., Bond N., Jou W., Gavrilova O., Portas J., McPherron A.C. Myostatin Inhibition Prevents Diabetes and Hyperphagia in a Mouse Model of Lipodystrophy // Diabetes. 2012. Vol. 61, № 10. P. 2414–2423. DOI: 10.2337/db110915
Holten M.K., Zacho M., Gaster M., Juel C., Wojtaszewski J.F., Dela F. Strength Training Increases InsulinMediated Glucose Uptake, GLUT4 Content, and Insulin Signaling in Skeletal Muscle in Patients with Type 2 Diabetes // Diabetes. 2004. Vol. 53, № 2. P. 294–305. DOI: 10.2337/diabetes.53.2.294
Qadir R., Sculthorpe N.F., Todd T., Brown E.C. Effectiveness of Resistance Training and Associated Program Characteristics in Patients at Risk for Type 2 Diabetes: A Systematic Review and Meta-Analysis // Sports Med. Open. 2021. Vol. 7, № 1. Р. 38–50. DOI: 10.1186/s40798-021-00321-x
Lunenfeld B. Testosterone Deficiency and the Metabolic Syndrome // Aging Male. 2007. Vol. 10, № 2. P. 53–56. DOI: 10.1080/13685530701390800
Stadhouders L.E.M., Verbrugge S.A.J., Smith J.A.B., Gabriel B.M., Hammersen T.D., Kolijn D., Vogel I.S.P., Mohamed A.D., de Wit G.M.J., Offringa C., Hoogaars W.M., Gehlert S., Wackerhage H., Jaspers R.T. Myotube Hypertrophy Is Associated with Cancer-Like Metabolic Reprogramming and Limited by PHGDH // bioRxiv. 2020. DOI: 10.1101/2020.12.01.403949
References
Sperling L.S., Mechanick J.I., Neeland I.J., Herrick C.J., Després J.P., Ndumele C.E., Vijayaraghavan K., Handelsman Y., Puckrein G.A., Araneta M.R., et al. The CardioMetabolic Health Alliance: Working Toward a New Care Model for the Metabolic Syndrome. J. Am. Coll. Cardiol., 2015, vol. 66, no. 9, pp. 1050–1067. DOI: 10.1016/j.jacc.2015.06.1328
Huh J.H., Ahn S.G., Kim Y.I., Go T., Sung K.C., Choi J.H., Koh K.K., Kim J.Y. Impact of Longitudinal Changes in Metabolic Syndrome Status over 2 Years on 10-Year Incident Diabetes Mellitus. Diabetes Metab. J., 2019, vol. 43, no. 4, pp. 530–538. DOI: 10.4093/dmj.2018.0111
Käräjämäki A.J., Korkiakoski A., Hukkanen J., Kesäniemi Y.A., Ukkola O. Long-Term Metabolic Fate and Mortality in Obesity Without Metabolic Syndrome. Ann. Med., 2022, vol. 54, no. 1, pp. 1432–1443. DOI: 10.1080/07853890.2022.2075915
Ahmadinezhad M., Arshadi M., Hesari E., Sharafoddin M., Azizi H., Khodamoradi F. The Relationship Between Metabolic Syndrome and Its Components with Bladder Cancer: A Systematic Review and Meta-Analysis of Cohort Studies. Epidemiol. Health, 2022, vol. 44. Art. no. e2022050. DOI: 10.4178/epih.e2022050
Du W., Guo K., Jin H., Sun L., Ruan S., Song Q. Association Between Metabolic Syndrome and Risk of Renal Cell Cancer: A Meta-Analysis. Front. Oncol., 2022, vol. 12. Art. no. 928619. DOI: 10.3389/fonc.2022.928619
Saklayen M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep., 2018, vol. 20, no. 2. Art. no. 12. DOI: 10.1007/s11906-018-0812-z
Avogaro A. Treating Diabetes Today with Gliclazide MR: A Matter of Numbers. Diabetes Obes. Metab., 2012, vol. 14, suppl. 1, pp. 14–19. DOI: 10.1111/j.1463-1326.2011.01508.x
Kim J.H., Cha J.-J., Lim S., An J., Kim M.-N., Hong S.J., Joo H.J., Park J.H., Yu C.W., Lim D.-S., Byeon K., Kim S.-W., Shin E.-S., Cha K.S., Chae J.K., Ahn Y., Jeong M.H., Ahn T.H. Target Low-Density Lipoprotein-Cholesterol and Secondary Prevention for Patients with Acute Myocardial Infarction: A Korean Nationwide Cohort Study. J. Clin. Med., 2022, vol. 11, no. 9. Art. no. 2650. DOI: 10.3390/jcm11092650
Peña A., Olson M.L., Hooker E., Ayers S.L., Castro F.G., Patrick D.L., Corral L., Lish E., Knowler W.C., Shaibi G.Q. Effects of a Diabetes Prevention Program on Type 2 Diabetes Risk Factors and Quality of Life Among Latino Youths with Prediabetes: A Randomized Clinical Trial. JAMA Netw. Open, 2022, vol. 5, no. 9. Art. no. e2231196. DOI: 10.1001/jamanetworkopen.2022.31196
Ooi T.C., Mat Ludin A.F., Loke S.C., Fiatarone Singh M.A., Wong T.W., Vytialingam N., Anthony Abdullah M.M.J., Ng O.C., Bahar N., Zainudin N., Lew L.C. A 16-Week Home-Based Progressive Resistance Tube Training Among Older Adults with Type-2 Diabetes Mellitus: Effect on Glycemic Control. Gerontol. Geriatr. Med., 2021, vol. 7. Art. no. 23337214211038789. DOI: 10.1177/23337214211038789
Colberg S.R., Sigal R.J., Yardley J.E., Riddell M.C., Dunstan D.W., Dempsey P.C., Horton E.S., Castorino K., Tate D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care, 2016, vol. 39, no. 11, pp. 2065–2079. DOI: 10.2337/dc16-1728
Lind L., Sundström J., Ärnlöv J., Risérus U., Lampa E. A Longitudinal Study over 40 Years to Study the Metabolic Syndrome as a Risk Factor for Cardiovascular Diseases. Sci. Rep., 2021, vol. 11, no. 1. Art. no. 2978. DOI: 10.1038/s41598-021-82398-8
Min J., Chang J.S., Choi J.Y., Kong I.D. Association Between Skeletal Muscle Mass, Physical Activity, and Metabolic Syndrome: The Korean National Health and Nutrition Examination Survey 2008–2011. Metab. Syndr. Relat. Disord., 2022, vol. 20, no. 3, pp. 156–165. DOI: 10.1089/met.2021.0080
Samuel V.T., Shulman G.I. The Pathogenesis of Insulin Resistance: Integrating Signaling Pathways and Substrate Flux. J. Clin. Invest., 2016, vol. 126, no. 1, pp. 12–22. DOI: 10.1172/JCI77812
Williams M.A., Haskell W.L., Ades P.A., Amsterdam E.A., Bittner V., Franklin B.A., Gulanick M., Laing S.T., Stewart K.J. Resistance Exercise in Individuals with and Without Cardiovascular Disease: 2007 Update: A Scientific Statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation, 2007, vol. 116, no. 5, pp. 572–584. DOI: 10.1161/CIRCULATIONAHA.107.185214
Draft Expert Recommendations of the Russian Society of Cardiology for the Diagnosis and Treatment of Metabolic Syndrome. 3rd revision. Мoscow, 2013 (in Russ.). Available at: https://docs.yandex.ru/docs/view?tm=1685958734&tld=ru&lang=ru&name=projectrecomMS.doc&text=%D0%...scardio.ru%2Fcontent%2FGuidelines%2FprojectrecomMS.doc…BE%25D0%25 (accessed: 5 June 2023).
Zhou Y., Wu W., Zou Y., Huang W., Lin S., Ye J., Lan Y. Benefits of Different Combinations of Aerobic and Resistance Exercise for Improving Plasma Glucose and Lipid Metabolism and Sleep Quality Among Elderly Patients with Metabolic Syndrome: A Randomized Controlled Trial. Endocr. J., 2022, vol. 69, no. 7, pp. 819–830. DOI: 10.1507/ endocrj.EJ21-0589
Liang M., Pan Y., Zhong T., Zeng Y., Cheng A.S.K. Effects of Aerobic, Resistance, and Combined Exercise on Metabolic Syndrome Parameters and Cardiovascular Risk Factors: A Systematic Review and Network Meta-Analysis. Rev. Cardiovasc. Med., 2021, vol. 22, no. 4, pp. 1523–1533. DOI: 10.31083/j.rcm2204156
Kwon D.H., Cho Y.G., Park H.A., Koo H.S. The Difference in the Prevalence of Metabolic Syndrome According to Meeting Guidelines for Aerobic Physical Activity and Muscle-Strengthening Exercise: A Cross-Sectional Study Performed Using the Korea National Health and Nutrition Examination Survey, 2014–2019. Nutrients, 2022, vol. 14, no. 24. Art. no. 5391. DOI: 10.3390/nu14245391
Elsangedy H.M., Machado D.G.D.S., Krinski K., Nascimento P.H.D., Oliveira G.T.A., Santos T.M., Hargreaves E.A., Parfitt G. Let the Pleasure Guide Your Resistance Training Intensity. Med. Sci. Sports Exerc., 2018, vol. 50, no. 7, pp. 1472–1479. DOI: 10.1249/MSS.0000000000001573
Lixandrão M.E., Ugrinowitsch C., Berton R., Vechin F.C., Conceição M.S., Damas F., Libardi C.A., Roschel H. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus LowLoad Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med., 2018, vol. 48, no. 2, pp. 361–378. DOI: 10.1007/s40279-017-0795-y
Saatmann N., Zaharia O.-P., Loenneke J.P., Roden M., Pesta D.H. Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends Endocrinol. Metab., 2021, vol. 32, no. 2, pp. 106–117. DOI: 10.1016/j.tem.2020.11.010
Alberti K.G., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.C., James W.P., Loria C.M., Smith S.C. Jr. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 2009, vol. 120, no. 16, pp. 1640–1645. DOI: 10.1161/CIRCULATIONAHA.109.192644
LeSuer D.A., McCormick J.H., Mayhew J.L., Wasserstein R.L., Arnold M.D. The Accuracy of Prediction Equations for Estimating 1-RM Performance in the Bench Press, Squat, and Deadlift. J. Strength Cond. Res., 1997, vol. 11, no. 4, pp. 211–213.
Freitas E.D.S., Galletti B.R.A., Koziol K.J., Miller R.M., Heishman A.D., Black C.D., Bemben D., Bemben M.G. The Acute Physiological Responses to Traditional vs. Practical Blood Flow Restriction Resistance Exercise in Untrained Men and Women. Front. Physiol., 2020, vol. 11. Art. no. 577224. DOI: 10.3389/fphys.2020.577224
Freitas E.D.S., Miller R.M., Heishman A.D., Ferreira-Júnior J.B., Araújo J.P., Bemben M.G. Acute Physiological Responses to Resistance Exercise with Continuous Versus Intermittent Blood Flow Restriction: A Randomized Controlled Trial. Front. Physiol., 2020, vol. 11. Art. no. 132. DOI: 10.3389/fphys.2020.00132
DeBoer M.D., Gurka M.J. Clinical Utility of Metabolic Syndrome Severity Scores: Considerations for Practitioners. Diabetes Metab. Syndr. Obes., 2017, vol. 10, pp. 65–72. DOI: 10.2147/DMSO.S101624
Moon H.E., Lee T.S., Chung T.-H. Association Between Lower-to-Upper Ratio of Appendicular Skeletal Muscle and Metabolic Syndrome. J. Clin. Med., 2022, vol. 11, no. 21. Art. no. 6309. DOI: 10.3390/jcm11216309
Sverchkov V.V., Bykov E.V. Myshechnaya sila i tyazhest’ metabolicheskogo sindroma [Muscle Strength and Metabolic Syndrome Severity]. Burganov R.T. (ed.). Olimpiyskiy sport i sport dlya vsekh [Olympic Sports and Sports for All]. Kazan, 2021, pp. 409–411.
Sverchkov V.V., Bykov E.V. Vliyanie nizkointensivnykh silovykh trenirovok s ogranicheniem krovotoka na dinamiku silovykh sposobnostey u lits s metabolicheskim sindromom [Effect of Low-Intensity Resistance Training with Blood Flow Restriction on Strength Dynamics in People with Metabolic Syndrome]. Problemy podgotovki nauchnykh i nauchno-pedagogicheskikh kadrov: opyt i perspektivy [Problems of Training Scientific and Academic Personnel: Experience and Prospects]. Iss. 19. Chelyabinsk, 2022, pp. 177–184.
McPherron A.С., Lee S.-J. Suppression of Body Fat Accumulation in Myostatin-Deficient Mice. J. Clin. Invest., 2002, vol. 109, no. 5, pp. 595–601. DOI: 10.1172/JCI13562
Guo T., Bond N., Jou W., Gavrilova O., Portas J., McPherron A.C. Myostatin Inhibition Prevents Diabetes and Hyperphagia in a Mouse Model of Lipodystrophy. Diabetes, 2012, vol. 61, no. 10, pp. 2414–2423. DOI: 10.2337/db11-0915
Holten M.K., Zacho M., Gaster M., Juel C., Wojtaszewski J.F., Dela F. Strength Training Increases InsulinMediated Glucose Uptake, GLUT4 Content, and Insulin Signaling in Skeletal Muscle in Patients with Type 2 Diabetes. Diabetes, 2004, vol. 53, no. 2, pp. 294–305. DOI: 10.2337/diabetes.53.2.294
Qadir R., Sculthorpe N.F., Todd T., Brown E.C. Effectiveness of Resistance Training and Associated Program Characteristics in Patients at Risk for Type 2 Diabetes: A Systematic Review and Meta-Analysis. Sports Med. Open, 2021, vol. 7, no. 1, pp. 38–50. DOI: 10.1186/s40798-021-00321-x
Lunenfeld B. Testosterone Deficiency and the Metabolic Syndrome. Aging Male, 2007, vol. 10, no. 2, pp. 53–56. DOI: 10.1080/13685530701390800
Stadhouders L.E.M., Verbrugge S.A.J., Smith J.A.B., Gabriel B.M., Hammersen T.D., Kolijn D., Vogel I.S.P., Mohamed A.D., de Wit G.M.J., Offringa C., Hoogaars W.M., Gehlert S., Wackerhage H., Jaspers R.T. Myotube Hypertrophy Is Associated with Cancer-Like Metabolic Reprogramming and Limited by PHGDH. bioRxiv, 2020. DOI: 10.1101/2020.12.01.403949