Cytokine-Mediated Dysregulation of Antiviral Immune Response upon Infection with SARS-CoV-2 (Review)

Authors

DOI:

https://doi.org/10.37482/2687-1491-Z148

Keywords:

antiviral immunity, cytokines, cytokine storm, immune dysregulation, COVID-19 pathogenesis, SARS-CoV-2, adaptive immune response

Abstract

This review presents a hypothesis on the formation of cytokine-mediated dysregulation of immune response in humans upon introduction of coronavirus 2 (SARS-CoV-2) into the body. Some morphological features of this virus are highlighted, contributing to its penetration into the body and to the generation of a signal for the activation of antiviral immune defence. It has been determined that interleukins 1, 6 and 10 stimulate systemic inflammation, while interleukins 2, 7 and 15 regulate the adaptive immune responses of CD8+ T cells. The protective effect of interferons λ1–4 has been shown to alter the Th1/Th2 balance and thereby preserve immune homeostasis. However, in patients with COVID-19, CD8+ T cells demonstrate patterns of functional depletion amid an evolving cytokine storm. Nevertheless, with sufficient reserve capabilities of the immune system, an adaptive immune response can develop, potentiated by the body’s interferon, interleukin and humoral-cellular defence against SARS-CoV-2. However, against the background of cytokine-mediated dysregulation of T-cell immunity and progressive hyperinflammation in patients with a severe course of COVID-19, blood tests show pronounced leukopenia, acute-phase proteins, changes in the ratio between certain types of leukocytes, as well as a decrease in the number of T helper and T suppressor cells. The author believes such changes in human immune responses to be a result of an uncontrolled overproduction of cytokines that changed the body’s immune reactivity and resistance as well as caused a subsequently decreased synthesis of specific antibodies and a limited humoral response to the antigen. A conclusion is made that a timely elimination of the dysregulatory immune response is necessary to form an adequate humoral response and maintain high immunoreactivity in human populations, as well as to increase the body’s resistance and form a stable population immunity.

Downloads

Download data is not yet available.

References

Perng Y.-C., Lenschow D.J. ISG15 in Antiviral Immunity and Beyond // Nat. Rev. Microbiol. 2018. Vol. 16, № 7. P. 423–439. DOI: 10.1038/s41579-018-0020-5

Tufan A., Güler A.A., Matucci-Cerinic M. COVID-19, Immune System Response, Hyperinflammation and Repurposing Antirheumatic Drugs // Turk. J. Med. Sci. 2020. Vol. 50, № SI-1. P. 620–632. DOI: 10.3906/sag-2004-168

Жмеренецкий К.В., Сазонова Е.Н., Воронина Н.В., Томилка Г.С., Сенкевич О.А., Гороховский В.С., Дьяченко С.В., Кольцов И.П., Куцый М.Б. COVID-19: только научные факты // Дальневост. мед. журн. 2020. № 1. С. 5–22. DOI: 10.35177/1994-5191-2020-1-5-22

Щелканов М.Ю., Колобухина Л.В., Бургасова О.А., Кружкова И.С., Малеев В.В. COVID-19: этиология, клиника, лечение // Инфекция и иммунитет. 2020. Т. 10, № 3. С. 421–445. DOI: 10.15789/2220-7619-CEC-1473

Coperchini F., Chiovato L., Croce L., Magri F., Rotondi M. The Cytokine Storm in COVID-19: An Overview of the Involvement of the Chemokine/Chemokine-Receptor System // Cytokine Growth Factor Rev. 2020. Vol. 53. P. 25–32. DOI: 10.1016/j.cytogfr.2020.05.003

Нечипуренко Ю.Д., Анашкина А.А., Матвеева О.В. Изменение антигенных детерминант S-белка вируса SARS-CoV-2 как возможная причина антителозависимого усиления инфекции и цитокинового шторма // Биофизика. 2020. Т. 65, № 4. С. 824–832. DOI: 10.31857/S0006302920040262

Соловьева А.С. Противовирусный иммунитет // Бюл. физиологии и патологии дыхания. 2015. Вып. 56. С. 113–118.

Zalinger Z.B., Elliott R., Weiss S.R. Role of the Inflammasome-Related Cytokines Il-1 and Il-18 During Infection with Murine Coronavirus // J. Neurovirol. 2017. Vol. 23, № 6. P. 845–854. DOI: 10.1007/s13365-017-0574-4

Abe T., Marutani Y., Shoji I. Cytosolic DNA-Sensing Immune Response and Viral Infection // Microbiol. Immunol. 2019. Vol. 63, № 2. P. 51–64. DOI: 10.1111/1348-0421.12669

Paces J., Strizova Z., Smrz D., Cerny J. COVID-19 and the Immune System // Physiol. Res. 2020. Vol. 69, № 3. P. 379–388. DOI: 10.33549/physiolres.934492

Zhou J.-H., Wang Y.-N., Chang Q.-Y., Ma P., Hu Y., Cao X. Type III Interferons in Viral Infection and Antiviral Immunity // Cell. Physiol. Biochem. 2018. Vol. 51, № 1. P. 173–185. DOI: 10.1159/000495172

Понежева Ж.Б., Купченко А.Н., Маннанова И.В., Горелов А.В. Интерфероны и противовирусный иммунитет // Эффектив. фармакотерапия. 2018. № 14. С. 14–21.

Sordillo P.P., Helson L. Curcumin Suppression of Cytokine Release and Cytokine Storm. A Potential Therapy for Patients with Ebola and Other Severe Viral Infections // In Vivo. 2015. Vol. 29, № 1. P. 1–4.

Hashimoto M., Im S.J., Araki K., Ahmed R. Cytokine-Mediated Regulation of CD8 T-Cell Responses During Acute and Chronic Viral Infection // Cold Spring Harb. Perspect. Biol. 2019. Vol. 11, № 1. Art. № a028464. DOI: 10.1101/cshperspect.a028464

Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., Bhattoa H.P. Evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths // Nutrients. 2020. Vol. 12, № 4. Art. № 988. DOI: 10.3390/nu12040988

Chiappelli F., Khakshooy A., Greenberg G. CoViD-19 Immunopathology and Immunotherapy // Bioinformation. 2020. Vol. 16, № 3. P. 219–222. DOI: 10.6026/97320630016219

Wan S., Yi Q., Fan S., Lv J., Zhang X., Guo L., Lang C., Xiao Q., Xiao K., Yi Z., Qiang M., Xiang J., Zhang B., Chen Y., Gao C. Relationships Among Lymphocyte Subsets, Cytokines, and the Pulmonary Inflammation Index in Coronavirus (COVID-19) Infected Patients // Br. J. Haematol. 2020. Vol. 189, № 3. P. 428–437. DOI: 10.1111/bjh.16659

Naumenko V., Turk M., Jenne C.N., Kim S.-J. Neutrophils in Viral Infection // Cell Tissue Res. 2018. Vol. 371, № 3. P. 505–516. DOI: 10.1007/s00441-017-2763-0

Sarzi-Puttini P., Giorgi V., Sirotti S., Marotto D., Ardizzone S., Rizzardini G., Antinori S., Galli M. COVID-19, Cytokines and Immunosuppression: What Can We Learn from Severe Acute Respiratory Syndrome? // Clin. Exp. Rheumatol. 2020. Vol. 38, № 2. P. 337–342. DOI: 10.55563/clinexprheumatol/xcdary

Mahallawi W.H., Khabour O.F., Zhang Q., Makhdoum H.M., Suliman B.A. MERS-CoV Infection in Humans Is Associated with a Pro-Inflammatory Th1 and Th17 Cytokine Profile // Cytokine. 2018. Vol. 104. P. 8–13. DOI: 10.1016/j.cyto.2018.01.025

Смирнов В.С., Тотолян А.А. Врожденный иммунитет при коронавирусной инфекции // Инфекция и иммунитет. 2020. Т. 10, № 2. С. 259–268. DOI: 10.15789/2220-7619-III-1440

Яремин Б.И., Назаров П.Х., Парабина Е.В., Константинов Д.Ю., Масликова У.В., Новрузбеков М.С. Пациент с иммуносупрессивной терапией в условиях пандемии нового коронавируса (SARS-CoV-2) // Вестн. мед. ин-та «РЕАВИЗ». 2020. № 2. С. 76–84.

Zhang N., Zhao Y.-D., Wang X.-M. CXCL10 an Important Chemokine Associated with Cytokine Storm in COVID-19 Infected Patients // Eur. Rev. Med. Pharmacol. Sci. 2020. Vol. 24, № 13. P. 7497–7505. DOI: 10.26355/eurrev_202007_21922

Soy M., Keser G., Atagündüz P., Tabak F., Atagündüz I., Kayhan S. Cytokine Storm in COVID-19: Pathogenesis and Overview of Anti-Inflammatory Agents Used in Treatment // Clin. Rheumatol. 2020. Vol. 39, № 7. P. 2085–2094. DOI: 10.1007/s10067-020-05190-5

Зиновкин Р.А., Гребенчиков О.А. Активация транскрипционного фактора Nrf2 как подход к предотвращению цитокинового шторма при COVID-19 // Биохимия. 2020. Т. 85, вып. 7. С. 978–983. DOI: 10.31857/S0320972520070118

Cunha L.L., Perazzio S.F., Azzi J., Cravedi P., Riella L.V. Remodeling of the Immune Response with Aging: Immunosenescence and Its Potential Impact on COVID-19 Immune Response // Front. Immunol. 2020. Vol. 11. Art. № 1748. DOI: 10.3389/fimmu.2020.01748

Schwartz M.D., Emerson S.G., Punt J., Goff W.D. Decreased Naïve T-Cell Production Leading to Cytokine Storm as Cause of Increased COVID-19 Severity with Comorbidities // Aging Dis. 2020. Vol. 11, № 4. P. 742–745. DOI: 10.14336/AD.2020.0619

Meftahi G.H., Jangravi Z., Sahraei H., Bahari Z. The Possible Pathophysiology Mechanism of Cytokine Storm in Elderly Adults with COVID-19 Infection: The Contribution of “Inflame-Aging” // Inflamm. Res. 2020. Vol. 69, № 9. P. 825–839. DOI: 10.1007/s00011-020-01372-8

Баклаушев В.П., Кулемзин С.В., Горчаков А.А., Лесняк В.Н., Юсубалиева Г.М., Сотникова А.Г. COVID-19. Этиология, патогенез, диагностика и лечение // Клин. практика. 2020. Т. 11, № 1. С. 7–20. DOI: 10.17816/clinpract26339

Круглова Л.С., Грязева Н.В. Биологическая терапия в условиях новой коронавирусной инфекции SARSCoV2 (COVID-19) // Госпит. медицина: наука и практика. 2020. Т. 1, № 2. С. 33–39.

Ye Q., Wang B., Mao J. The Pathogenesis and Treatment of the ‘Cytokine Storm’ in COVID-19 // J. Infect. 2020. Vol. 80, № 6. P. 607–613. DOI: 10.1016/j.jinf.2020.03.037

Sun X., Wang T., Cai D., Hu Z., Chen J., Liao H., Zhi L., Wei H., Zhang Z., Qiu Y., Wang J., Wang A. Cytokine Storm Intervention in the Early Stages of COVID-19 Pneumonia // Cytokine Growth Factor Rev. 2020. Vol. 53. P. 38–42. DOI: 10.1016/j.cytogfr.2020.04.002

Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W., Tian D.S. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China // Clin. Infect. Dis. 2020. Vol. 71, № 15. P. 762–768. DOI: 10.1093/cid/ciaa248

Колесникова Н.В., Самойленко Е.С. Роль цитокинов в патогенезе инфекционного эндокардита // Иммунология. 2020. Т. 41, № 3. С. 262–268. DOI: 10.33029/0206-4952-2020-41-3-262-268

Beltra J.-C., Decaluwe H. Cytokines and Persistent Viral Infections // Cytokine. 2016. Vol. 82. P. 4–15. DOI: 10.1016/j.cyto.2016.02.006

Channappanavar R., Perlman S. Pathogenic Human Coronavirus Infections: Causes and Consequences of Cytokine Storm and Immunopathology // Semin. Immunopathol. 2017. Vol. 39, № 5. P. 529–539. DOI: 10.1007/s00281017-0629-x

Conti P., Ronconi G., Caraffa A., Gallenga C.E., Ross R., Frydas L., Kritas S.K. Induction of Pro-Inflammatory Cytokines (IL-1 and IL-6) and Lung Inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-Inflammatory Strategies // J. Biol. Regul. Homeost. Agents. 2020. Vol. 34, № 2. P. 327–331. DOI: 10.23812/CONTI-E

McGonagle D., Sharif K., O’Regan A., Bridgewood C. The Role of Cytokines Including Interleukin-6 in COVID-19 Induced Pneumonia and Macrophage Activation Syndrome-Like Disease // Autoimmun. Rev. 2020. Vol. 19, № 6. Art. № 102537. DOI: 10.1016/j.autrev.2020.102537

Azkur A.K., Akdis M., Azkur D., Sokolowska M., van de Veen W., Brüggen M.C., O’Mahony L., Gao Y., Nadeau K., Akdis C.A. Immune Response to SARS-CoV-2 and Mechanisms of Immunopathological Changes in COVID-19 // Allergy. 2020. Vol. 75, № 7. P. 1564–1581. DOI: 10.1111/all.14364

Jamilloux Y., Henry T., Belot A., Viel S., Fauter M., El Jammal T., Walzer T., François B., Sève P. Should We Stimulate or Suppress Immune Responses in COVID-19? Cytokine and Anti-Cytokine Interventions // Autoimmun. Rev. 2020. Vol. 19, № 7. Art. № 102567. DOI: 10.1016/j.autrev.2020.102567

García L.F. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19 // Front. Immunol. 2020. Vol. 11. Art. № 1441. DOI: 10.3389/fimmu.2020.01441

Wang J., Jiang M., Chen X., Montaner L.J. Cytokine Storm and Leukocyte Changes in Mild versus Severe SARSCoV2 Infection: Review of 3939 COVID-19 Patients in China and Emerging Pathogenesis and Therapy Concepts // J. Leukoc. Biol. 2020. Vol. 108, № 1. P. 17–41. DOI: 10.1002/JLB.3COVR0520-272R

Guo Y.-R., Cao Q.-D., Hong Z.-S., Tan Y.-Y., Chen S.-D., Jin H.-J., Tan K.-S., Wang D.-Y., Yan Y. The Origin, Transmission and Clinical Therapies on Coronavirus Disease 2019 (COVID-19) Outbreak – an Update on the Status // Mil. Med. Res. 2020. Vol. 7, № 1. Art. № 11. DOI: 10.1186/s40779-020-00240-0

References

Perng Y.-C., Lenschow D.J. ISG15 in Antiviral Immunity and Beyond. Nat. Rev. Microbiol., 2018, vol. 16, no. 7, pp. 423–439. DOI: 10.1038/s41579-018-0020-5

Tufan A., Güler A.A., Matucci-Cerinic M. COVID-19, Immune System Response, Hyperinflammation and Repurposing Antirheumatic Drugs. Turk. J. Med. Sci., 2020, vol. 50, no. SI-1, pp. 620–632. DOI: 10.3906/sag-2004-168

Zhmerenetskiy K.V., Sazonova E.N., Voronina N.V., Tomilka G.S., Senkevich O.A., Gorokhovskiy V.S., D’yachenko S.V., Kol’tsov I.P., Kutsyy M.B. COVID-19: tol’ko nauchnye fakty [COVID-19: Scientific Facts Only]. Dal’nevostochnyy meditsinskiy zhurnal, 2020, no. 1, pp. 5–22. DOI: 10.35177/1994-5191-2020-1-5-22

Shchelkanov M.Yu., Kolobukhina L.V., Burgasova O.A., Kruzhkova I.S., Maleev V.V. COVID-19: Etiology, Clinical Picture, Treatment. Infektsiya i immunitet, 2020, vol. 10, no. 3, pp. 421–445 (in Russ.). DOI: 10.15789/22207619-CEC-1473

Coperchini F., Chiovato L., Croce L., Magri F., Rotondi M. The Cytokine Storm in COVID-19: An Overview of the Involvement of the Chemokine/Chemokine-Receptor System. Cytokine Growth Factor Rev., 2020, vol. 53, pp. 25–32. DOI: 10.1016/j.cytogfr.2020.05.003

Nechipurenko Yu.D., Anashkina A.A., Matveeva O.V. Izmenenie antigennykh determinant S-belka virusa SARS-CoV-2 kak vozmozhnaya prichina antitelozavisimogo usileniya infektsii i tsitokinovogo shtorma [Change of Antigenic Determinants of SARS-CoV-2 Virus S-Protein as a Possible Cause of Antibody-Dependent Enhancement of Virus Infection and Cytokine Storm]. Biofizika, 2020, vol. 65, no. 4, pp. 824–832. DOI: 10.31857/S0006302920040262

Solov’eva A.S. Protivovirusnyy immunitet [Antiviral Immunity]. Byulleten’ fiziologii i patologii dykhaniya, 2015, no. 56, pp. 113–118.

Zalinger Z.B., Elliott R., Weiss S.R. Role of the Inflammasome-Related Cytokines Il-1 and Il-18 During Infection with Murine Coronavirus. J. Neurovirol., 2017, vol. 23, no. 6, pp. 845–854. DOI: 10.1007/s13365-017-0574-4

Abe T., Marutani Y., Shoji I. Cytosolic DNA-Sensing Immune Response and Viral Infection. Microbiol. Immunol., 2019, vol. 63, no. 2, pp. 51–64. DOI: 10.1111/1348-0421.12669

Paces J., Strizova Z., Smrz D., Cerny J. COVID-19 and the Immune System. Physiol. Res., 2020, vol. 69, no. 3, pp. 379–388. DOI: 10.33549/physiolres.934492

Zhou J.-H., Wang Y.-N., Chang Q.-Y., Ma P., Hu Y., Cao X. Type III Interferons in Viral Infection and Antiviral Immunity. Cell. Physiol. Biochem., 2018, vol. 51, no. 1, pp. 173–185. DOI: 10.1159/000495172

Ponezheva Zh.B., Kupchenko A.N., Mannanova I.V., Gorelov A.V. Interferony i protivovirusnyy immunitet [Interferons and Antiviral Immunity]. Effektivnaya farmakoterapiya, 2018, no. 14, pp. 14–21.

Sordillo P.P., Helson L. Curcumin Suppression of Cytokine Release and Cytokine Storm. A Potential Therapy for Patients with Ebola and Other Severe Viral Infections. In Vivo, 2015, vol. 29, no. 1, pp. 1–4.

Hashimoto M., Im S.J., Araki K., Ahmed R. Cytokine-Mediated Regulation of CD8 T-Cell Responses During Acute and Chronic Viral Infection. Cold Spring Harb. Perspect. Biol., 2019, vol. 11, no. 1. Art. no. a028464. DOI: 10.1101/cshperspect.a028464

Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., Bhattoa H.P. Evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients, 2020, vol. 12, no. 4. Art. no. 988. DOI: 10.3390/nu12040988

Chiappelli F., Khakshooy A., Greenberg G. CoViD-19 Immunopathology and Immunotherapy. Bioinformation, 2020, vol. 16, no. 3, pp. 219–222. DOI: 10.6026/97320630016219

Wan S., Yi Q., Fan S., Lv J., Zhang X., Guo L., Lang C., Xiao Q., Xiao K., Yi Z., Qiang M., Xiang J., Zhang B., Chen Y., Gao C. Relationships Among Lymphocyte Subsets, Cytokines, and the Pulmonary Inflammation Index in Coronavirus (COVID-19) Infected Patients. Br. J. Haematol., 2020, vol. 189, no. 3, pp. 428–437. DOI: 10.1111/bjh.16659

Naumenko V., Turk M., Jenne C.N., Kim S.-J. Neutrophils in Viral Infection. Cell Tissue Res., 2018, vol. 371, no. 3, pp. 505–516. DOI: 10.1007/s00441-017-2763-0

Sarzi-Puttini P., Giorgi V., Sirotti S., Marotto D., Ardizzone S., Rizzardini G., Antinori S., Galli M. COVID-19, Cytokines and Immunosuppression: What Can We Learn from Severe Acute Respiratory Syndrome? Clin. Exp. Rheumatol., 2020, vol. 38, no. 2, pp. 337–342. DOI: 10.55563/clinexprheumatol/xcdary

Mahallawi W.H., Khabour O.F., Zhang Q., Makhdoum H.M., Suliman B.A. MERS-CoV Infection in Humans Is Associated with a Pro-Inflammatory Th1 and Th17 Cytokine Profile. Cytokine, 2018, vol. 104, pp. 8–13. DOI: 10.1016/j.cyto.2018.01.025

Smirnov V.S., Totolian Areg A. Innate Immunity in Coronavirus Infection. Infektsiya i immunitet, 2020, vol. 10, no. 2, pp. 259–268 (in Russ.). DOI: 10.15789/2220-7619-III-1440

Yaremin B.I., Nazarov P.Kh., Parabina E.V., Konstantinov D.Yu., Maslikova U.V., Novruzbekov M.S. A Patient Receiving Immunosuppressive Therapy in Coronavirus Pandemic (SARS-CoV-2). Vestnik REAVIZ, 2020, no. 2, pp. 76–84 (in Russ.).

Zhang N., Zhao Y.-D., Wang X.-M. CXCL10 an Important Chemokine Associated with Cytokine Storm in COVID-19 Infected Patients. Eur. Rev. Med. Pharmacol. Sci., 2020, vol. 24, no. 13, pp. 7497–7505. DOI: 10.26355/eurrev_202007_21922

Soy M., Keser G., Atagündüz P., Tabak F., Atagündüz I., Kayhan S. Cytokine Storm in COVID-19: Pathogenesis and Overview of Anti-Inflammatory Agents Used in Treatment. Clin. Rheumatol., 2020, vol. 39, no. 7, pp. 2085–2094. DOI: 10.1007/s10067-020-05190-5

Zinovkin R.A., Grebenchikov O.A. Aktivatsiya transkriptsionnogo faktora Nrf2 kak podkhod k predotvrashcheniyu tsitokinovogo shtorma pri COVID-19 [Transcription Factor Nrf2 as a Therapeutic Target for the Prevention of Cytokine Storm in COVID-19]. Biokhimiya, 2020, vol. 85, no. 7, pp. 978–983. DOI: 10.31857/S0320972520070118

Cunha L.L., Perazzio S.F., Azzi J., Cravedi P., Riella L.V. Remodeling of the Immune Response with Aging: Immunosenescence and Its Potential Impact on COVID-19 Immune Response. Front. Immunol., 2020, vol. 11. Art. no. 1748. DOI: 10.3389/fimmu.2020.01748

Schwartz M.D., Emerson S.G., Punt J., Goff W.D. Decreased Naïve T-Cell Production Leading to Cytokine Storm as Cause of Increased COVID-19 Severity with Comorbidities. Aging Dis., 2020, vol. 11, no. 4, pp. 742–745. DOI: 10.14336/AD.2020.0619

Meftahi G.H., Jangravi Z., Sahraei H., Bahari Z. The Possible Pathophysiology Mechanism of Cytokine Storm in Elderly Adults with COVID-19 Infection: The Contribution of “Inflame-Aging”. Inflamm. Res., 2020, vol. 69, no. 9, pp. 825–839. DOI: 10.1007/s00011-020-01372-8

Baklaushev V.P., Kulemzin S.V., Gorchakov А.А., Lesnyak V.N., Ysubalieva G.M., Sotnikova A.G. COVID-19. Etiology, Pathogenesis, Diagnosis and Treatment. Klinicheskaya praktika, 2020, vol. 11, no. 1, pp. 7–20 (in Russ.). DOI: 10.17816/clinpract26339

Kruglova L.S., Gryazeva N.V. Biologicheskaya terapiya v usloviyakh novoy koronavirusnoy infektsii SARS-CoV-2 (COVID-19) [Biological Therapy in the Context of a New Coronavirus Infection SARS-CoV-2 (CОVID-19)]. Gospital’naya meditsina: nauka i praktika, 2020, vol. 1, no. 2, pp. 33–39.

Ye Q., Wang B., Mao J. The Pathogenesis and Treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect., 2020, vol. 80, no. 6, pp. 607–613. DOI: 10.1016/j.jinf.2020.03.037

Sun X., Wang T., Cai D., Hu Z., Chen J., Liao H., Zhi L., Wei H., Zhang Z., Qiu Y., Wang J., Wang A. Cytokine Storm Intervention in the Early Stages of COVID-19 Pneumonia. Cytokine Growth Factor Rev., 2020, vol. 53, pp. 38–42. DOI: 10.1016/j.cytogfr.2020.04.002

Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W., Tian D.S. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis., 2020, vol. 71, no. 15, pp. 762–768. DOI: 10.1093/cid/ciaa248

Kolesnikova N.V., Samoylenko E.S. The Role of Cytokines in the Pathogenesis of Infective Endocarditis. Immunologiya, 2020, vol. 41, no. 3, pp. 262–268 (in Russ.). DOI: 10.33029/0206-4952-2020-41-3-262-268

Beltra J.-C., Decaluwe H. Cytokines and Persistent Viral Infections. Cytokine, 2016, vol. 82, pp. 4–15. DOI: 10.1016/j.cyto.2016.02.006

Channappanavar R., Perlman S. Pathogenic Human Coronavirus Infections: Causes and Consequences of Cytokine Storm and Immunopathology. Semin. Immunopathol., 2017, vol. 39, no. 5, pp. 529–539. DOI: 10.1007/ s00281-017-0629-x

Conti P., Ronconi G., Caraffa A., Gallenga C.E., Ross R., Frydas L., Kritas S.K. Induction of Pro-Inflammatory Cytokines (IL-1 and IL-6) and Lung Inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-Inflammatory Strategies. J. Biol. Regul. Homeost. Agents, 2020, vol. 34, no. 2, pp. 327–331. DOI: 10.23812/CONTI-E

McGonagle D., Sharif K., O’Regan A., Bridgewood C. The Role of Cytokines Including Interleukin-6 in COVID-19 Induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun. Rev., 2020, vol. 19, no. 6. Art. no. 102537. DOI: 10.1016/j.autrev.2020.102537

Azkur A.K., Akdis M., Azkur D., Sokolowska M., van de Veen W., Brüggen M.C., O’Mahony L., Gao Y., Nadeau K., Akdis C.A. Immune Response to SARS-CoV-2 and Mechanisms of Immunopathological Changes in COVID-19. Allergy, 2020, vol. 75, no. 7, pp. 1564–1581. DOI: 10.1111/all.14364

Jamilloux Y., Henry T., Belot A., Viel S., Fauter M., El Jammal T., Walzer T., François B., Sève P. Should We Stimulate or Suppress Immune Responses in COVID-19? Cytokine and Anti-Cytokine Interventions. Autoimmun. Rev., 2020, vol. 19, no. 7. Art. no. 102567. DOI: 10.1016/j.autrev.2020.102567

García L.F. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front. Immunol., 2020, vol. 11. Art. no. 1441. DOI: 10.3389/fimmu.2020.01441

Wang J., Jiang M., Chen X., Montaner L.J. Cytokine Storm and Leukocyte Changes in Mild versus Severe SARS-CoV-2 Infection: Review of 3939 COVID-19 Patients in China and Emerging Pathogenesis and Therapy Concepts. J. Leukoc. Biol., 2020, vol. 108, no. 1, pp. 17–41. DOI: 10.1002/JLB.3COVR0520-272R

Guo Y.-R., Cao Q.-D., Hong Z.-S., Tan Y.-Y., Chen S.-D., Jin H.-J., Tan K.-S., Wang D.-Y., Yan Y. The Origin, Transmission and Clinical Therapies on Coronavirus Disease 2019 (COVID-19) Outbreak – an Update on the Status. Mil. Med. Res., 2020, vol. 7, no. 1. Art. no. 11. DOI: 10.1186/s40779-020-00240-0

Published

2023-10-09

How to Cite

Artemenkov А. . (2023). Cytokine-Mediated Dysregulation of Antiviral Immune Response upon Infection with SARS-CoV-2 (Review). Journal of Medical and Biological Research, 11(3), 329–340. https://doi.org/10.37482/2687-1491-Z148