Modern Views on the Neuropeptide Oxytocin. Part I. Oxytocin Structure, Synthesis, Excretion, Regulation, Inhibition and Metabolism. Oxytocin Receptors (Review)
DOI:
https://doi.org/10.37482/2687-1491-Z233Keywords:
oxytocin, oxytocin receptors, neuropeptides, social behaviour, aggressionAbstract
It is known that the behavioural reactions of animals and humans are controlled by a number of neuropeptides. This article examines the modern views of scientists on the physiological effects of oxytocin and its influence on the social behaviour, psychological state and somatoautonomic functions of humans and animals. In addition, the paper looks into studies on the correlation between insufficient oxytocin production and the pathogenesis of various mental diseases. Data on the structure, synthesis, metabolism and inactivation of oxytocin are presented. Information is provided on the regulation of oxytocin release under the influence of psychological factors and inhibition of oxytocin release into the central nervous system by a number of biologically active substances: glucocorticoids, testosterone, acetylcholine, nitric oxide and gamma-aminobutyric acid. Substances suppressing the physiological effect of oxytocin provoke hostility in animals and humans by reducing the effect of oxytocin on the amygdala, which is responsible for aggression. Further, the paper summarizes data on the synthesis of oxytocin on the periphery, in such organs as the corpus luteum, uterus, amnion, placenta, interstitial cells of the testes, adrenal glands, heart, dermis and thymus. Peripheral organs with the expression and binding of oxytocin receptors include macula densa cells, cardiomyocytes, nociceptive dorsal root ganglion neurons, retina, adipocytes and cells of the adrenal medulla. Oxytocin synthesis and oxytocin receptor expression have been detected in human skin fibroblasts and keratinocytes. These cells regulate processes involved in atopic dermatitis, such as proliferation, inflammation and reaction to oxidative stress in the skin. Questions about the location of oxytocin receptors, both in the central nervous system and beyond, have been discussed. The most studied brain regions expressing oxytocin receptors are the hypothalamus, prefrontal cortex, hippocampus and amygdala.
Downloads
References
Гербек Ю.Э., Гулевич Р.Г., Шепелева Д.В., Гриневич В.В. Окситоцин: коэволюция человека и доместицированных животных // Вавилов. журн. генетики и селекции. 2016. Т. 20, № 2. С. 220–227. https://doi.org/10.18699/VJ16.145
Циркин В.И., Трухина С.И., Трухин А.Н. Окситоцин: синтез, выделение, метаболизм и регуляция этих процессов (обзор) // Журн. мед.-биол. исследований. 2018. Т. 6, № 3. С. 270–283. https://doi.org/10.17238/issn2542-1298.2018.6.3.270
Тепляшина Е.А., Лопатина О.Л., Екимова М.В., Пожиленкова Е.А., Салмина А.Б. Роль окситоцина и окситоциновых рецепторов в регуляции репродуктивных функций и фолликулогенеза // Сиб. мед. журн. (Иркутск). 2013. Т. 123, № 8. С. 21–26. https://doi.org/10.22138/2500-0918-2018-15-3-470-487
Ясенявская А.Л., Самотруева М.А., Цибизова А.А., Мясоедов Н.Ф., Андреева Л.А. Влияние нейропептидов на психоэмоциональное состояние в условиях «социального» стресса // Курск. науч.-практ. вестн. Человек и его здоровье. 2020. № 3. С. 37–45. https://doi.org/10.21626/vestnik/2020-3/05
Терещенко С.Ю., Смольникова М.В. Окситоцин – нейрогормон доверия и эмоциональной привязанности: влияние на поведение у детей и подростков // Журн. неврологии и психиатрии им. С.С. Корсакова. 2019. Т. 119, № 12. С. 148–153. https://doi.org/10.17116/jnevro2019119121148
Hidema S., Fukuda T., Hiraoka Y., Mizukami H., Hayashi R., Otsuka A., Suzuki S., Miyazaki S., Nishimori K. Generation of Oxtr cDNAHA-Ires-Cre Mice for Gene Expression in an Oxytocin Receptor Specific Manner // J. Cell. Biochem. 2016. Vol. 117, № 5. P. 1099–1111. https://doi.org/10.1002/jcb.25393
Jurek B., Slattery D.A., Hiraoka Y., Liu Y., Nishimori K., Aguilera G., Neumann I.D., van den Burg E.H. Oxytocin Regulates Stress-Induced Crf Gene Transcription Through CREB-Regulated Transcription Coactivator 3 // J. Neurosci. 2015. Vol. 35, № 35. P. 12248–12260. https://doi.org/10.1523/JNEUROSCI.1345-14.2015
Dabrowska J., Hazra R., Guo J.-D., DeWitt S., Rainnie D.G. Central CRF Neurons Are Not Created Equal: Phenotypic Differences in CRF-Containing Neurons of the Rat Paraventricular Hypothalamus and the Bed Nucleus of the Stria Terminalis // Front. Neurosci. 2013. Vol. 7, № 156. https://doi.org/10.3389/fnins.2013.00156
Caldwell H.K. Oxytocin and Vasopressin: Powerful Regulators of Social Behavior // Neuroscientist. 2017. Vol. 23, № 5. Р. 517–528. https://doi.org/10.1177/1073858417708284
Nakajima M., Görlich A., Heintz N. Oxytocin Modulates Female Sociosexual Behavior Through a Specific Class of Prefrontal Cortical Interneurons // Cell. 2014. Vol. 159, № 2. Р. 295–305. https://doi.org/10.1016/j.cell.2014.09.020
Li K., Nakajima M., Ibañez-Tallon I., Heintz N. A Cortical Circuit for Sexually Dimorphic Oxytocin-Dependent Anxiety Behaviors // Cell. 2016. Vol. 167, № 1. P. 60–72. https://doi.org/10.1016/j.cell.2016.08.067
Duchemin A., Seelke A.M.H., Simmons T.C., Freeman S.M., Bales K.L. Localization of Oxytocin Receptors in the Prairie Vole (Microtus ochrogaster) Neocortex // Neuroscience. 2017. Vol. 348. Р. 201–211. https://doi.org/10.1016/j.neuroscience.2017.02.017
Harden S.W., Frazier C.J. Oxytocin Depolarizes Fast-Spiking Hilar Interneurons and Induces GABA Release onto Mossy Cells of the Rat Dentate Gyrus // Hippocampus. 2016. Vol. 26, № 9. Р. 1124–1139. https://doi.org/10.1002/hipo.22595
Lehner M., Skórzewska A., Wisłowska-Stanek A. Sex-Related Predisposition to Post-Traumatic Stress Disorder Development – the Role of Neuropeptides // Int. J. Environ. Res. Public Health. 2022. Vol. 19, № 1. Art. № 314. https://doi.org/10.3390/ijerph19010314
de la Mora M.P., Pérez-Carrera D., Crespo-Ramírez M., Tarakanov A., Fuxe K., Borroto-Escuela D.O. Signaling in Dopamine D2 Receptor-Oxytocin Receptor Heterocomplexes and Its Relevance for the Anxiolytic Effects of Dopamine and Oxytocin Interactions in the Amygdala of the Rat // Biochim. Biophys. Acta. 2016. Vol. 1862, № 11. Р. 2075–2085. https://doi.org/10.1016/j.bbadis.2016.07.004
Bartz J.A., Nitschke J.P., Krol S.A., Tellier P.-P. Oxytocin Selectively Improves Empathic Accuracy: A Replication in Men and Novel Insights in Women // Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 2019. Vol. 4, № 12. Р. 1042–1048. https://doi.org/10.1016/j.bpsc.2019.01.014
Alaerts K., Steyaert J., Vanaudenaerde B., Wenderoth N., Bernaerts S. Changes in Endogenous Oxytocin Levels After Intranasal Oxytocin Treatment in Adult Men with Autism: An Exploratory Study with Long-Term Follow-Up // Eur. Neuropsychopharmacol. 2021. Vol. 43. Р. 147–152. https://doi.org/10.1016/j.euroneuro.2020.11.014
Kerem L., Lawson E.A. The Effects of Oxytocin on Appetite Regulation, Food Intake and Metabolism in Humans // Int. J. Mol. Sci. 2021. Vol. 22, № 14. Art. № 7737. https://doi.org/10.3390/ijms22147737
Colaianni G., Tamma R., Di Benedetto A., Yuen T., Sun L., Zaidi M., Zallone A. The Oxytocin–Bone Axis // J. Neuroendocrinol. 2014. Vol. 26, № 2. Р. 53–57. https://doi.org/10.1111/jne.12120
Giel K., Zipfel S., Hallschmid M. Oxytocin and Eating Disorders: A Narrative Review on Emerging Findings and Perspectives // Curr. Neuropharmacol. 2018. Vol. 16, № 8. Р. 1111–1121. https://doi.org/10.2174/1570159X15666171128143158