Von Willebrand Factor as a Marker of Inflammation and Haemostasis (Review)

Authors

DOI:

https://doi.org/10.37482/2687-1491-Z232

Keywords:

von Willebrand factor, Weibel–Palade bodies, ADAMTS-13, immunothrombosis, systemic inflammation

Abstract

The review presents an analysis of literature data on the role of von Willebrand factor (VWF) in the system of haemostasis and inflammation as well as provides a pathophysiological assessment of the influence of VWF interaction with pathogenic microbiological agents on its metabolism and of the role of the metalloproteinase ADAMTS-13 in this process. The structure, functions and metabolism of VWF in pathological conditions are described. Data are presented indicating that the release of VWF from endothelial cells promotes the binding and decrease in the activity of ADAMTS-13, which regulates the functional activity of VWF. This, in turn, leads to the accumulation of ultralarge VWF multimers in the bloodstream, inducing the development of thrombosis. It is noted that biologically active substances involved in pathological processes act as stimulators of VWF exocytosis from Weibel–Palade bodies, which results in the development of microcirculatory disorders. The review aimed to assess the importance of VWF in the pathogenesis of inflammatory and thrombotic disorders. The sample consisted of original articles and short reports published from 2005 to 2022 and included in the PubMed, eLIBRARY.RU and Cyberleninka databases and addressing the pathophysiological role of VWF in maintaining systemic inflammation. The following search and selection strategy for scientific articles was applied using MeSH-indexed terms: von Willebrand factor [Supplementary Concept], ADAMTS-13 [MeSH Terms], systemic inflammation [MeSH Terms], and thrombotic disorders [MeSH Terms]. The analysis of scientific publications allows us to consider VWF as a marker of both haemostasis and inflammation. The influence of infectious agents on its metabolism is pointed out: during inflammation, bacteria associated with VWF multimers overcome the haemodynamic effects of the bloodstream, evade the immune cells and become fixed on the surface of the endothelium, causing endovascular disorders.

Downloads

Download data is not yet available.

References

Соколов Е.И., Гришина Т.И., Штин С.Р. Влияние фактора Виллебранда и эндотелина-1 на формирование тромботического статуса при ишемической болезни сердца // Кардиология. 2013. Т. 53, № 3. С. 25–30.

Автаева Ю.Н., Мельников И.С., Васильев С.А., Габбасов З.А. Роль фактора фон Виллебранда в патологии гемостаза // Атеротромбоз. 2022. № 2. С. 79–102. https://doi.org/10.21518/2307-1109-2022-12-2-79-102

Маргиева Т.В., Сергеева Т.В. Участие маркеров эндотелиальной дисфункции в патогенезе хронического гломерулонефрита // Вопр. соврем. педиатрии. 2006. Т. 5, № 3. С. 22–30.

Вериго Я.И., Демко И.В., Петрова М.М., Собко Е.А., Мамаева М.Г. Фактор Виллебранда и его роль в дисфункции эндотелия при ишемической болезни сердца // Сиб. мед. обозрение. 2014. № 5(89). С. 23–25.

Gragnano F., Sperlongano S., Golia E., Natale F., Bianchi R., Crisci M., Fimiani F., Pariggiano I., Diana V., Carbone A., Cesaro A., Concilio C., Limongelli G., Russo M., Calabrò P. The Role of von Willebrand Factor in Vascular Inflammation: From Pathogenesis to Targeted Therapy // Mediat. Inflamm. 2017. Vol. 2017, № 1. Art. № 5620314. https://doi.org/10.1155/2017/5620314

De Ceunynck K., De Meyer S.F., Vanhoorelbeke K. Unwinding the von Willebrand Factor Strings Puzzle // Blood. 2013. Vol. 121, № 2. P. 270–277. https://doi.org/10.1182/blood-2012-07-442285

Козловская Н.Л., Хафизова Е.Ю., Боброва Л.А., Бобкова И.Н., Кучиева А.М., Варшавский В.А., Столяревич Е.С., Авдонин П.В., Захарова Е.В. Роль дефицита ADAMTS13 в развитии тромбозов микроциркуляторного русла почек, не ассоциированных с тромботической тромбоцитопенической пурпурой // Клин. нефрология. 2011. № 6. С. 25–31.

Favaloro E.J., Henry B.M., Lippi G. Increased VWF and Decreased ADAMTS-13 in COVID-19: Creating a Milieu for (Micro)Thrombosis // Semin. Thromb. Hemost. 2021. Vol. 47, № 4. P. 400–418. https://doi.org/10.1055/s-0041-1727282

Бабичев А.В. Роль эндотелия в механизмах гемостаза // Педиатр. 2013. Т. 4, № 1. С. 122–127.

Авдонин П.В., Цитрина А.А., Миронова Г.Ю., Авдонин П.П., Жарких И.Л., Надеев А.Д., Гончаров Н.В. Пероксид водорода стимулирует экзоцитоз фактора Виллебранда эндотелиальными клетками пупочной вены человека // Изв. РАН Сер. биол. 2017. № 5. С. 549–556. https://doi.org/10.7868/S0002332917050101

Dal Lin C., Acquasaliente L., Iliceto S., De Filippis V., Vitiello G., Tona F. Von Willebrand Factor Multimers and the Relaxation Response: A One-Year Study // Entropy (Basel). 2021. Vol. 23, № 4. Art. № 447. https://doi.org/10.3390/e23040447

Дивакова Ю.В., Колосков А.В. Эндотелиально-тромбоцитарное взаимодействие при сепсисе // Гематология и трасфузиология. 2022. Т. 67, № 3. С. 406–418. https://doi.org/10.35754/0234-5730-2022-67-3-406-418

Охота С.Д., Козлов С.Г., Автаева Ю.Н., Мельников И.С., Габбасов З.А. Фактор фон Виллебранда и сердечно-сосудистая патология // Атеросклероз и дислипидемии. 2022. № 4(49). С. 10–24. https://doi.org/10.34687/2219-8202.JAD.2022.04.0002

Хлынова О.В., Степина Е.А., Трапезникова А.А. Воспалительные заболевания кишечника и кардиоваскулярная патология: патогенетические взаимосвязи и возрастные особенности // Терапия. 2022. № 7(59). С. 54–58. https://doi.org/10.18565/therapy.2022.7.54-58

Chen J., Fu X., Wang Y., Ling M., McMullen B., Kulman J., Chung D.W., López J.A. Oxidative Modification of von Willebrand Factor by Neutrophil Oxidants Inhibits Its Cleavage by ADAMTS13 // Blood. 2010. Vol. 115, № 3. С. 706–712. https://doi.org/10.1182/blood-2009-03-213967

Wang Y., Chen J., Ling M., López J.A., Chung D.W., Fu X. Hypochlorous Acid Generated by Neutrophils Inactivates ADAMTS13: An Oxidative Mechanism for Regulating ADAMTS13 Proteolytic Activity During Inflammation // J. Biol. Chem. 2015. Vol. 290, № 3. P. 1422–1431. https://doi.org/10.1074/jbc.M114.599084

Karki P., Birukov K.G. Rho and Reactive Oxygen Species at Crossroads of Endothelial Permeability and Inflammation // Antioxid. Redox Signal. 2019. Vol. 31, № 13. P. 1009–1022. https://doi.org/10.1089/ars.2019.7798

Авдонин П.П., Труфанов С.К., Цитрина А.А., Рыбакова Е.Ю., Гончаров Н.В., Авдонин П.В. Использование конъюгированного c флуоресцентной меткой аптамера ARC1779 для оценки влияния H2O2 на экзоцитоз фактора Виллебранда // Биохимия. 2021. Т. 87, № 2. С. 147–157. https://doi.org/10.31857/S0320972521020019

Schwameis M., Schörgenhofer C., Assinger A., Steiner M.M., Jilma B. VWF Excess and ADAMTS13 Deficiency: A Unifying Pathomechanism Linking Inflammation to Thrombosis in DIC, Malaria, and TTP // Thromb. Haemost. 2015. Vol. 113, № 4. С. 708–718. https://doi.org/10.1160/TH14-09-0731

Reiter R.A., Varadi K., Turecek P.L., Jilma B., Knöbl P. Changes in ADAMTS13 (von-Willebrand-Factor-Cleaving Protease) Activity After Induced Release of von Willebrand Factor During Acute Systemic Inflammation // Thromb. Haemost. 2005. Vol. 93, № 3. P. 554–558. https://doi.org/10.1160/TH04-08-0467

Kremer Hovinga J.A., Zeerleder S., Kessler P., Romani de Wit T., van Mourik J.A., Hack C.E., ten Cate H., Reitsma P.H., Wuillemin W.A., Lämmle B. ADAMTS‐13, von Willebrand Factor and Related Parameters in Severe Sepsis and Septic Shock // J. Thromb. Haemost. 2007. Vol. 5, № 11. P. 2284–2290. https://doi.org/10.1111/j.1538-7836.2007.02743.x

Bockmeyer C.L., Claus R.A., Budde U., Kentouche K., Schneppenheim R., Lösche W., Reinhart K., Brunkhorst F.M. Inflammation-Associated ADAMTS13 Deficiency Promotes Formation of Ultra-Large von Willebrand Factor // Haematologica. 2008. Vol. 93, № 1. P. 137–140. https://doi.org/10.3324/haematol.11677

Bernardo A., Ball C., Nolasco L., Choi H., Moake J.L., Dong J.F. Platelets Adhered to Endothelial Cell-Bound Ultra-Large von Willebrand Factor Strings Support Leukocyte Tethering and Rolling Under High Shear Stress // J. Thromb. Haemost. 2005. Vol. 3, № 3. P. 562–570. https://doi.org/10.1111/j.1538-7836.2005.01122.x

Лянгузов А.В., Сергунина О.Ю., Игнатьев С.В., Ковтунова М.Е., Калинина С.Л., Семакин А.С. Роль фактора фон Виллебранда в развитии системного воспаления, коагулопатии и органных дисфункций // Тромбоз, гемостаз и реология. 2021. № 3. С. 4–11. https://doi.org/10.25555/THR.2021.3.0979

Одинцова И.А., Миргородская О.Е., Русакова С.Э., Горбулич А.В., Гололобов В.Г. Нейтрофильные внеклеточные ловушки: структура и биологическая роль // Гены и клетки. 2022. Т. 17, № 4. С. 63–74. https://doi.org/10.23868/gc352562

Ward C.M., Tetaz T.J., Andrews R.K., Berndt M.C. Binding of the von Willebrand Factor A1 Domain to Histone // Thromb. Res. 1997. Vol. 86, № 6. P. 469–477. https://doi.org/10.1016/S0049-3848(97)00096-0

Brill A., Fuchs T.A., Savchenko A.S., Thomas G.M., Martinod K., De Meyer S.F., Bhandari A.A., Wagner D.D. Neutrophil Extracellular Traps Promote Deep Vein Thrombosis in Mice // J. Thromb. Haemost. 2012. Vol. 10, № 1. P. 136–144. https://doi.org/10.1111/j.1538-7836.2011.04544.x

Fuchs T.A., Brill A., Duerschmied D., Schatzberg D., Monestier M., Myers D.D. Jr., Wrobleski S.K., Wakefield T.W., Hartwig J.H., Wagner D.D. Extracellular DNA Traps Promote Thrombosis // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, № 36. P. 15880–15885. https://doi.org/10.1073/pnas.1005743107

Turner N.A., Moake J. Assembly and Activation of Alternative Complement Components on Endothelial Cell-Anchored Ultra-Large von Willebrand Factor Links Complement and Hemostasis-Thrombosis // PLoS One. 2013. Vol. 8, № 3. Art. № e59372. https://doi.org/10.1371/journal.pone.0059372

Feng S., Liang X., Kroll M.H., Chung D.W., Afshar-Kharghan V. Von Willebrand Factor Is a Cofactor in Complement Regulation // Blood. 2015. Vol. 125, № 6. P. 1034–1037. https://doi.org/10.1182/blood-2014-06-585430

Bettoni S., Galbusera M., Gastoldi S., Donadelli R., Tentori C., Spartà G., Bresin E., Mele C., Alberti M., Tortajada A., Yebenes H., Remuzzi G., Noris M. Interaction Between Multimeric von Willebrand Factor and Complement: A Fresh Look to the Pathophysiology of Microvascular Thrombosis // J. Immunol. 2017. Vol. 199, № 3. P. 1021–1040. https://doi.org/10.4049/jimmunol.1601121

Wu H., Jay L., Lin S., Han C., Yang S., Cataland S.R., Masias C. Interrelationship Between ADAMTS13 Activity, von Willebrand Factor, and Complement Activation in Remission from Immune-Mediated Thrombotic Thrombocytopenic Purpura // Br. J. Haematol. 2020. Vol. 189, № 1. P. e18–e20. https://doi.org/10.1111/bjh.16415

Nolasco J.G., Nolasco L.H., Da Q., Cirlos S., Ruggeri Z.M., Moake J.L., Cruz M.A. Complement Component C3 Binds to the A3 Domain of von Willebrand Factor // TH Open. 2018. Vol. 2, № 3. P. e338–e345. https://doi.org/10.1055/s-0038-1672189

Rawish E., Sauter M., Sauter R., Nording H., Langer H.F. Complement, Inflammation and Thrombosis // Br. J. Pharmacol. 2021. Vol. 178, № 14. P. 2892–2904. https://doi.org/10.1111/bph.15476

Gianni P., Goldin M., Ngu S., Zafeiropoulos S., Geropoulos G., Giannis D. Complement-Mediated Microvascular Injury and Thrombosis in the Pathogenesis of Severe COVID-19: A Review // World J. Exp. Med. 2022. Vol. 12, № 4. P. 53–67. https://doi.org/10.5493/wjem.v12.i4.53

Авдонин П.П., Цветаева Н.В., Гончаров Н.В., Рыбакова Е.Ю., Труфанов С.К., Цитрина А.А., Авдонин П.В. Фактор Виллебранда в норме и при патологии // Биол. мембраны. 2021. Т. 38, № 4. С. 237–256. https://doi.org/10.31857/S0233475521040034

Lüttge M., Fulde M., Talay S.R., Nerlich A., Rohde M., Preissner K.T., Hammerschmidt S., Steinert M., Mitchell T.J., Chhatwal G.S., Bergmann S. Streptococcus pneumoniae Induces Exocytosis of Weibel-Palade Bodies in Pulmonary Endothelial Cells // Cell. Microbiol. 2012. Vol. 14, № 2. P. 210–225. https://doi.org/10.1111/j.1462-5822.2011.01712.x

Jagau H., Behrens I.-K., Lahme K., Lorz G., Köster R.W., Schneppenheim R., Obser T., Brehm M.A., König G., Kohler T.P., Rohde M., Frank R., Tegge W., Fulde M., Hammerschmidt S., Steinert M., Bergmann S. Von Willebrand Factor Mediates Pneumococcal Aggregation and Adhesion in Blood Flow // Front. Microbiol. 2019. Vol. 10. Art. № 511. https://doi.org/10.3389/fmicb.2019.00511

Freitas C., Assis M.-C., Saliba A.M., Morandi V.M., Figueiredo C.C., Pereira M., Plotkowski M.-C. The Infection of Microvascular Endothelial Cells with ExoU-Producing Pseudomonas aeruginosa Triggers the Release of von Willebrand Factor and Platelet Adhesion // Mem. Inst. Oswaldo Cruz. 2012. Vol. 107, № 6. P. 728–734. https://doi.org/10.1590/S0074-02762012000600004

Pappelbaum K.I., Gorzelanny C., Grässle S., Suckau J., Laschke M.W., Bischoff M., Bauer C., Schorpp-Kistner M., Weidenmaier C., Schneppenheim R., Obser T., Sinha B., Schneider S.W. Ultralarge von Willebrand Factor Fibers Mediate Luminal Staphylococcus aureus Adhesion to an Intact Endothelial Cell Layer Under Shear Stress // Circulation. 2013. Vol. 128, № 1. P. 50–59. https://doi.org/10.1161/CIRCULATIONAHA.113.002008

Na M., Hu Z., Mohammad M., Stroparo M.D.M., Ali A., Fei Y., Jarneborn A., Verhamme P., Schneewind O., Missiakas D., Jin T. The Expression of von Willebrand Factor-Binding Protein Determines Joint-Invading Capacity of Staphylococcus aureus, a Core Mechanism of Septic Arthritis // mBio. 2020. Vol. 11, № 6. Art. № 02472-20. https://doi.org/10.1128/mBio.02472-20

Pietrocola G., Nobile G., Rindi S., Speziale P. Staphylococcus aureus Manipulates Innate Immunity Through Own and Host-Expressed Proteases // Front. Cell. Infect. Microbiol. 2017. Vol. 7. Art. № 166. https://doi.org/10.3389/fcimb.2017.00166

Popova T.G., Millis B., Bailey C., Popov S.G. Platelets, Inflammatory Cells, von Willebrand Factor, Syndecan-1, Fibrin, Fibronectin, and Bacteria Co-Localize in the Liver Thrombi of Bacillus anthracis-Infected Mice // Microb. Pathog. 2012. Vol. 52, № 1. P. 1–9. https://doi.org/10.1016/j.micpath.2011.08.004

Chung M.-C., Popova T.G., Jorgensen S.C., Dong L., Chandhoke V., Bailey C.L., Popov S.G. Degradation of Circulating von Willebrand Factor and Its Regulator ADAMTS13 Implicates Secreted Bacillus anthracis Metalloproteases in Anthrax Consumptive Coagulopathy // J. Biol. Chem. 2008. Vol. 283, № 15. P. 9531–9542. https://doi.org/10.1074/jbc.M705871200

Birnie E., Koh G.C.K.W., Löwenberg E.C., Meijers J.C.M., Maude R.R., Day N.P.J., Peacock S.J., van der Poll T., Wiersinga W.J. Increased von Willebrand Factor, Decreased ADAMTS13 and Thrombocytopenia in Melioidosis // PLoS Negl. Trop. Dis. 2017. Vol. 11, № 3. Art. № e0005468. https://doi.org/10.1371/journal.pntd.0005468

Алексеева И.В., Уразгильдеева С.А. Функциональная гетерогенность фактора фон Виллебранда: патогенетическое значение и практические аспекты использования в кардиологии // Кардиология. 2022. Т. 62, № 7. С. 54–60. https://doi.org/10.18087/cardio.2022.7.n1641

Chen J., Chung D.W. Inflammation, von Willebrand Factor, and ADAMTS13 // Blood. 2018. Vol. 132, №. 2. Р. 141–147. https://doi.org/10.1182/blood-2018-02-769000

Published

2025-03-19

How to Cite

Kalashnikova М. В., Sarkisyan Н. С., & Kulichenko А. Н. (2025). Von Willebrand Factor as a Marker of Inflammation and Haemostasis (Review). Journal of Medical and Biological Research, 13(1), 91–103. https://doi.org/10.37482/2687-1491-Z232