Anhidrotic Ectodermal Dysplasia in a Child Due to a Rare Mutation in the EDA Gene (a Clinical Case)
DOI:
https://doi.org/10.37482/2687-1491-Z231Keywords:
anhidrotic ectodermal dysplasia, anodontia, abnormalities of teeth and jaws, EDA gene, singlenucleotide substitutionAbstract
Anhidrotic ectodermal dysplasia is а heterogenous genetic disorder with multiple clinical manifestations. In medical examinations, including dental examinations, the differential aspect of diagnosis is important, since many forms of the disease have similar clinical manifestations. Of particular interest are the phenotypic effects of genetic mutations and numerous polymorphic variations of candidate genes for ectodermal dysplasia. The purpose of this study was to describe and analyse a clinical case of a patient with complete anodontia of deciduous teeth, partial anodontia of tooth buds of permanent teeth, impaired tooth formation and abnormal tooth shape due to anhidrotic ectodermal dysplasia as a result of a rare mutation in the ectodysplasin A (EDA) gene. Materials and methods. We analysed the phenotype of a male 19-month-old patient with dental pathology as a result of a disease caused by the presence of the polymorphic A allele of the EDA gene in the genotype. Further, this variation was analysed and its clinical significance was determined using the following databases: PubMed, eLIBRARY.RU, dbSNP, HGMD, GenBank, MutationTaster, PolyPhen-2, PROVEAN, and SIFT. Results. There is practically no data on the clinical significance of the c.1043C>A (р.Thr348Asn) polymorphism of the EDA gene; however the presence of clinical manifestations of the phenotype of anhidrotic ectodermal dysplasia in the patient suggests a negative effect of this single-nucleotide substitution. The described clinical case with a rare genetic disorder in dental practice is of undoubted interest to practitioners, as this pathology requires a comprehensive medical approach, long-term treatment and rehabilitation.
Downloads
References
Bala M., Pathak A. Ectodermal Dysplasia with True Anodontia // J. Oral Maxillofac. Pathol. 2011. Vol. 15, № 2. Р. 244–246. https://doi.org/10.4103/0973-029x.84515
Zhang L., Yu M., Wong S.-W., Qu H., Cai T., Liu Y., Liu H., Fan Z., Zheng J., Zhou Y., Feng H., Han D. Comparative Analysis of Rare EDAR Mutations and Tooth Agenesis Pattern in EDAR- and EDA-Associated Nonsyndromic Oligodontia // Hum. Mutat. 2020. Vol. 41, № 11. Р. 1957–1966. https://doi.org/10.1002/humu.24104
Lan R., Wu Y., Dai Q., Wang F. Gene Mutations and Chromosomal Abnormalities in Syndromes with Tooth Agenesis // Oral Dis. 2023. Vol. 29, № 6. Р. 2401–2408. https://doi.org/10.1111/odi.14402
Гамаюнов Б.Н., Васильев Г.С., Пекарева Н.А., Шубина Е.С., Гольцов А.Ю. Эктодермальная дисплазия у ребенка с гипотрихозом, эрозиями волосистой части головы и атрезией слезных точек // Клин. дерматология и венерология. 2020. Т. 19, № 6. С. 899–903. https://doi.org/10.17116/klinderma202019061899
Смердина Ю.Г., Смердина Л.Н. Генезис и клиника эктодермальной дисплазии ангидротической (синдром Криста–Сименса–Турена) // Успехи соврем. естествознания. 2008. № 5. С. 138–139.
Торгашина А.Г., Фирсова И.В. Симптомокомплекс эктодермальной дисплазии в клинике стоматологии // Бюл. мед. Интернет‐конференций. 2013. Т. 3, № 3. С. 745–747.
Eismann H., Knauer K., Künzel W., Müller M., Müller W. Störungen der Dentition und Zahnentwicklung // Kinderstomatologie. Leipzig, 1988. S. 136–139.
Zonana J., Elder M.E., Schneider L.C., Orlow S.J., Moss C., Golabi M., Shapira S.K., Farndon P.A., Wara D.W., Emmal S.A., Ferguson B.M. A Novel X-Linked Disorder of Immune Deficiency and Hypohidrotic Ectodermal Dysplasia Is Allelic to Incontinentia Pigmenti and Due to Mutations in IKK-Gamma (NEMO) // Am. J. Hum. Genet. 2000. Vol. 67, № 6. Р. 1555–1562. https://doi.org/10.1086/316914
McGrath J.A., Duijf P.H., Doetsch V., Irvine A.D., de Waal R., Vanmolkot K.R., Wessagowit V., Kelly A., Atherton D.J., Griffiths W.A., Orlow S.J., van Haeringen A., Ausems M.G., Yang A., McKeon F., Bamshad M.A., Brunner H.G., Hamel B.C., van Bokhoven H. Hay–Wells Syndrome Is Caused by Heterozygous Missense Mutations in the SAM Domain of p63 // Hum. Mol. Genet. 2001. Vol. 10, № 3. Р. 221–229. https://doi.org/10.1093/hmg/10.3.221
Rinne T., Hamel B., van Bokhoven H., Brunner H.G. Pattern of p63 Mutations and Their Phenotypes – Update // Am. J. Med. Genet. A. 2006. Vol. 140, № 13. Р. 1396–1406. https://doi.org/10.1002/ajmg.a.31271
Зеленова М.А., Ворсанова С.Г., Юров Ю.Б., Куринная О.С., Воинова В.Ю., Юров И.Ю. Дупликация гена EDA у мальчика с расстройством аутистического спектра и задержкой развития: молекулярно-цитогенетическое, биоинформатическое и психологическое исследование редкой геномной патологии // Междунар. журн. приклад. и фундам. исследований. 2017. № 7-1. С. 97–101.
Gaide O., Schneider P. Permanent Correction of an Inherited Ectodermal Dysplasia with Recombinant EDA // Nat. Med. 2003. Vol. 9, № 5. Р. 614–618. https://doi.org/10.1038/nm861
Филиппова В.В., Неретина И.А., Матвеева Е.А., Ершова Н.М. Ангидротическая эктодермальная дисплазия. Синдром Криста–Сименса–Турена. Диагностическая одиссея // Здравоохранение Дал. Востока. 2023. № 4(98). С. 17–22.
Музычина А.А., Бугоркова И.А., Тутова К.С., Музычина А.В. Синдром Криста–Сименса–Турена у ребенка (клинический случай) // Мед.-соц. проблемы семьи. 2019. Т. 24, № 2. С. 117–120.
Mikkola M.L., Thesleff I. Ectodysplasin Signaling in Development // Cytokine Growth Factor Rev. 2003. Vol. 14, № 3–4. Р. 211–224. https://doi.org/10.1016/s1359-6101(03)00020-0
Coe B.P., Witherspoon K., Rosenfeld J.A., van Bon B.W., Vulto-van Silfhout A.T., Bosco P., Friend K.L., Baker C., Buono S., Vissers L.E., et al. Refining Analyses of Copy Number Variation Identifies Specific Genes Associated with Developmental Delay // Nat. Genet. 2014. Vol. 46, № 10. Р. 1063–1071. https://doi.org/10.1038/ng.3092
Vorsanova S.G., Yurov Y.B., Iourov I.Y. Neurogenomic Pathway of Autism Spectrum Disorders: Linking Germline and Somatic Mutations to Genetic-Environmental Interactions // Curr. Bioinform. 2017. Vol. 12, № 1. P. 19–26. http://dx.doi.org/10.2174/1574893611666160606164849
Ковальская В.А., Череватова Т.Б., Поляков А.В., Рыжкова О.П. Молекулярно-генетическая характеристика гипогидротических эктодермальных дисплазий // Вавилов. журн. генетики и селекции. 2023. Т. 27, № 6. С. 676–683. https://doi.org/10.18699/VJGB-23-78
Yu K., Sheng Y., Wang F., Yang S., Wan F., Lei M., Wu Y. Eight EDA Mutations in Chinese Patients with Tooth Agenesis and Genotype–Phenotype Analysis // Oral Dis. 2024. Vol. 30, № 7. P. 4598–4607. https://doi.org/10.1111/odi.14878
Ranjan P., Das P. Understanding the Impact of Missense Mutations on the Structure and Function of the EDA Gene in X-Linked Hypohidrotic Ectodermal Dysplasia: A Bioinformatics Approach // J. Cell. Biochem. 2022. Vol. 123, № 2. Р. 431–449. https://doi.org/10.1002/jcb.30186
Gökdere S., Schneider H., Hehr U., Willen L., Schneider P., Maier-Wohlfart S. Functional and Clinical Analysis of Five EDA Variants Associated with Ectodermal Dysplasia but with a Hard-to-Predict Significance // Front. Genet. 2022. Vol. 13. Art. № 934395. https://doi.org/10.3389/fgene.2022.934395
Bao D.-Y., Yang Y., Tong X., Qin H.-Y. Activation of Wnt/β-Catenin Signaling Pathway Down Regulated Osteogenic Differentiation of Bone Marrow-Derived Stem Cells in an Anhidrotic Ectodermal Dysplasia Patient with EDA/EDAR/EDARADD Mutation // Heliyon. 2023. Vol. 10, № 1. Art. № e23057. https://doi.org/10.1016/j.heliyon.2023.e23057
Wohlfart S., Hammersen J., Schneider H. Mutational Spectrum in 101 Patients with Hypohidrotic Ectodermal Dysplasia and Breakpoint Mapping in Independent Cases of Rare Genomic Rearrangements // J. Hum. Genet. 2016. Vol. 61, № 10. Р. 891–897. https://doi.org/10.1038/jhg.2016.75
Yu K., Huang C., Wan F., Jiang C., Chen J., Li X., Wang F., Wu J., Lei M., Wu Y. Structural Insights into Pathogenic Mechanism of Hypohidrotic Ectodermal Dysplasia Caused by Ectodysplasin A Variants // Nat. Commun. 2023. Vol. 14, № 1. Art. № 767. https://doi.org/10.1038/s41467-023-36367-6
Zhao Z., Zhang T., Li T., Ye Y., Feng C., Wang H., Zhang X. A Novel EDAR Variant Identified in Non-Syndromic Tooth Agenesis: Insights from Molecular Dynamics // Arch. Oral Biol. 2023. Vol. 146. Art. № 105600. https://doi.org/10.1016/j.archoralbio.2022.105600
Gao Y., Jiang X., Wei Z., Long H., Lai W. The EDA/EDAR/NF-κB Pathway in Non-Syndromic Tooth Agenesis: A Genetic Perspective // Front. Genet. 2023. Vol. 14. Art. № 1168538. https://doi.org/10.3389/fgene.2023.1168538
Wright J.T., Fete M., Schneider H., Zinser M., Koster M.I., Clarke A.J., Hadj-Rabia S., Tadini G., Pagnan N., Visinoni A.F., Bergendal B., Abbott B., Fete T., Stanford C., Butcher C., D’Souza R.N., Sybert V.P., Morasso M.I. Ectodermal Dysplasias: Classification and Organization by Phenotype, Genotype and Molecular Pathway // Am. J. Med. Genet. A. 2019. Vol. 179, № 3. Р. 442–447. https://doi.org/10.1002/ajmg.a.61045
Adhikari K., Fontanil T., Cal S., Mendoza-Revilla J., Fuentes-Guajardo M., Chacón-Duque J.-C., Al-Saadi F., Johansson J.A., Quinto-Sanchez M., Acuña-Alonzo V., et al. A Genome-Wide Association Scan in Admixed Latin Americans Identifies Loci Influencing Facial and Scalp Hair Features // Nat. Commun. 2016. Vol. 7. Art. № 10815. https://doi.org/10.1038/ncomms10815
Wu S., Zhang M., Yang X., Peng F., Zhang J., Tan J., Yang Y., Wang L., Hu Y., Peng Q., Li J., Liu Y., Guan Y., Chen C., Hamer M.A., Nijsten T., Zeng C., Adhikari K., Gallo C., Poletti G., Schuler-Faccini L., Bortolini M.C., Canizales-Quinteros S., Rothhammer F., Bedoya G., González-José R., Li H., Krutmann J., Liu F., Kayser M., Ruiz-Linares A., Tang K., Xu S., Zhang L., Jin L., Wang S. Genome-Wide Association Studies and CRISPR/Cas9-Mediated Gene Editing Identify Regulatory Variants Influencing Eyebrow Thickness in Humans // PLoS Genet. 2018. Vol. 14, № 9. Art. № 1007640. https://doi.org/10.1371/journal.pgen.1007640
Пономаренко И.В. Отбор полиморфных локусов для анализа ассоциаций при генетико-эпидемиологических исследованиях // Науч. результат. Медицина и фармация. 2018. Т. 4, № 2. С. 40–54. https://doi.org/10.18413/2313-8955-2018-4-2-0-5