The Ratio of Morphological Variants of Monocytes During Dermal Regeneration After Frostbite in Rats

Authors

DOI:

https://doi.org/10.37482/2687-1491-Z243

Keywords:

polymorphonuclear monocytes, monocytes, promonocytes, peripheral blood, red bone marrow, acute local cold injury, regeneration of dermal intercellular matrix

Abstract

Monocytes and macrophages play one of the key roles in the processes of tissue formation and repair. Currently, there is great interest in the study of these cells due to their potential in therapeutic regeneration as they participate in the immune response and regulation of haematopoiesis. However, data on the role of morphological variants of monocytes, localized in the red bone marrow and circulating in the peripheral blood, in the process of skin repair after thermal damage are extremely scarce and incomplete. The purpose of this study was to analyse the involvement of bone marrow and peripheral blood monocytes with different morphological characteristics in the reparative regeneration following acute local cold injury to the skin in rats. Materials and methods. The research was conducted on apparently healthy mature outbred rats (n = 100) weighing 200–220 g. All experimental animals were divided into 5 groups of 20 individuals each: the control and four experimental (3, 7, 14 and 21 days after frostbite) groups. Third-degree frostbite was modelled by applying a metal weight cooled in liquid nitrogen (−196 °C) to the depilated skin of the rat’s back for 3 min. The area of damage was 4.9 cm2. The study used methods of histological analysis of the skin, blood and red bone marrow. Results. During the regeneration of the intercellular matrix of the dermis, no sharp fluctuations in the content of the morphological variants of monocytes (polymorphonuclear monocytes, monocytes proper and promonocytes) were recorded in the bone marrow and the blood. On the 3rd day after injury, proliferation and differentiation were the dominant processes, and by the 7th day, intensive cell migration was observed. By days 14 and 21, the levels of various forms of monocytes returned to their initial values.

Downloads

Download data is not yet available.

References

Черных Е.Р., Шевела Е.Я., Останин А.А. Роль макрофагов в восстановлении повреждений центральной нервной системы: новые возможности в лечении неврологических расстройств // Мед. иммунология. 2017. Т. 19, No 1. С. 7–18. https://doi.org/10.15789/1563-0625-2017-1-7-18

Niu Y., Wang Z., Shi Y., Dong L., Wang C. Modulating Macrophage Activities to Promote Endogenous Bone Regeneration: Biological Mechanisms and Engineering Approaches // Bioact. Mater. 2021. Vo l. 6, No 1. P. 244–261. https://doi.org/10.1016/j.bioactmat.2020.08.012

Юшков Б.Г. Клетки иммунной системы и регуляция регенерации // Бюл. сиб. медицины. 2017. Т. 16, No 4. С. 94–105. https://doi.org/10.20538/1682-0363-2017-4-94-105

Ogle M.E., Segar C.E., Sridhar S., Botchwey E.A. Monocytes and Macrophages in Tissue Repair: Implications for Immunoregenerative Biomaterial Design // Exp. Biol. Med. (Maywood). 2016. Vol. 241, No 10. P. 1084–1097. https://doi.org/10.1177/1535370216650293

Ohta M., Chosa N., Kyakumoto S., Yokota S., Okubo N., Nemoto A., Kamo M., Joh S., Satoh K., Ishisaki A. IL-1β and TNF-α Suppress TGF-β-Promoted NGF Expression in Periodontal Ligament-Derived Fibroblasts Through Inactivation of TGF-β-Induced Smad2/3- and p38 MAPK-Mediated Signals // Int. J. Mol. Med. 2018. Vol. 42, No 3. P. 1484–1494. https://doi.org/10.3892/ijmm.2018.3714

Berman B., Duncan M.R. Inhibition of Dermal Fibrosis by Interferons // Dermal Immune System / ed. by B.J. Nickoloff. Boca Raton: CRC Press, 1992. P. 209–226. https://doi.org/10.1201/9780429261893-11

Киселева Е.П., Крылов А.В., Старикова Э.А., Кузнецова С.А. Фактор роста сосудистого эндотелия и иммунная система // Успехи соврем. биологии. 2009. Т. 129, No 4. С. 336–347.

Zhao J.-W., Ping J.-D., Wang Y.-F., Liu X.-N., Li N., Hu Z.-L., Ming L. Vitamin D Suppress the Production of Vascular Endothelial Growth Factor in Mast Cell by Inhibiting PI3K/Akt/p38 MAPK/HIF-1α Pathway in Chronic Spontaneous Urticaria // Clin. Immunol. 2020. Vol. 215. Art. No 108444. https://doi.org/10.1016/j.clim.2020.108444

Cox N., Pokrovskii M., Vicario R., Geissmann F. Origins, Biology, and Diseases of Tissue Macrophages // Annu. Rev. Immunol. 2021. Vol. 39. P. 313–344. https://doi.org/10.1146/annurev-immunol-093019-111748

Marcella S., Petraroli A., Braile M., Parente R., Ferrara A.L., Galdiero M.R., Modestino L., Cristinziano L., Rossi F.W., Varricchi G., Triggiani M., de Paulis A., Spadaro G., Loffredo S. Vascular Endothelial Growth Factors and Angiopoietins as New Players in Mastocytosis // Clin. Exp. Med. 2021. Vol. 21, No 3. P. 415–427. https://doi.org/10.1007/s10238-021-00693-0

Захаров Ю.М. Регуляция эритропоэза в эритробластических островках костного мозга // Рос. физиол. журн. им. И.М. Сеченова. 2011. Т. 97, No 9. С. 980–994.

Italiani P., Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation // Front. Immunol. 2014. Vo l. 5. Art. No 514. https://doi.org/10.3389/fimmu.2014.00514

Каткий К.П. Иммунная система: морфо-функциональная организация периферических лимфоидных органов // Мед. иммунология. 1999. Т. 1, No 1–2. С. 11–16.

Кошевенко Ю.Н. Механизмы клеточного иммунитета в коже // Косметика и медицина. 2001. Т. 3. С. 15–26.

Шутский Н.А., Кашутин С.Л., Шагров Л.Л., Малявская С.И., Холопов Н.С. Содержание клеток в зонах дермы крыс в норме и на фоне метаболического синдрома при восстановлении после холодовой травмы // Журн. мед.-биол. исследований. 2022. Т. 10, No 2. С. 87–99. https://doi.org/10.37482/2687-1491-Z094

Савинцев А.М., Малько А.В., Смолянинов А.Б. Клеточные технологии в хирургическом лечении переломов проксимального отдела бедренной кости // Здоровье – основа человеч. потенциала: проблемы и пути их решения. 2012. Т. 7, No 2. С. 834.

Фрейдлин И.С. Иммунная система и ее дефекты. СПб.: Полисан, 1998. 111 с.

Шутский Н.А., Шагров Л.Л., Кашутин С.Л., Малявская С.И. Содержание коллагена дермы и факторов роста сыворотки крови у крыс после локального холодового повреждения // Цитология. 2020. Т. 62, No 8. С. 601–608. https://doi.org/10.31857/S0041377120080076

Westman J., Grinstein S., Marques P.E. Phagocytosis of Necrotic Debris at Sites of Injury and Inflammation // Front. Immunol. 2020. Vo l. 10. Art. No 3030. https://doi.org/10.3389/fimmu.2019.03030

Симбирцев А.С. Цитокины: классификация и биологические функции // Цитокины и воспаление. 2004. Т. 3, No 2. С. 16–22.

van Furth R., Cohn Z.A. The Origin and Kinetics of Mononuclear Phagocytes // J. Exp. Med. 1968. Vol. 128, No 3. P. 415–435. https://doi.org/10.1084/jem.128.3.415

van Furth R., Beekhuizen H. Monocytes // Encyclopedia of Immunology. / ed. by P.J. Delves. Elsevier, 1998. P. 1750–1754. https://doi.org/10.1006/rwei.1999.0443

Sapudom J., Mohamed W.K.E., Garcia-Sabaté A., Alatoom A., Karaman S., Mahtani N., Teo J.C.М. Collagen Fibril Density Modulates Macrophage Activation and Cellular Functions During Tissue Repair // Bioengineering (Basel). 2020. Vol. 7, No 2. Art. No 33. https://doi.org/10.3390/bioengineering7020033

Published

2025-05-27 — Updated on 2025-05-27

How to Cite

Shutskiy Н. А., Kashutin С. Л., Felenko Н. С., Mizgirev Д. В., & Ovcharenko И. А. (2025). The Ratio of Morphological Variants of Monocytes During Dermal Regeneration After Frostbite in Rats. Journal of Medical and Biological Research, 13(2), 213–221. https://doi.org/10.37482/2687-1491-Z243

Issue

Section

MEDICAL AND BIOLOGICAL SCIENCES