Assessment of Exogenous Effects on Spermatogenesis in Rats Based on the Level of Middle Molecules
DOI:
https://doi.org/10.37482/2687-1491-Z238Keywords:
oxidative stress, peroxidation, malondialdehyde, middle molecules, spermatogenesis, rat testes, exogenous effectsAbstract
In experimental and clinical studies, a most important task is to detect the development of oxidative stress. In the process of free radical oxidation of lipids and proteins, a number of intermediate products are formed, which, according to their characteristics, belong to the category of so-called middle molecules. There is a direct relationship between changes in the level of middle molecules and the functional state of organs. In this regard, determining the content of middle molecules in tissues will allow us to characterize their functional state. The purpose of this study is to establish the relationship between the functional changes in spermatogenesis under exogenous exposures and the levels of intermediate metabolites (middle molecules) in the homogenates of rat testes and epididymides. Materials and methods. The research involved 50 outbred sexually mature male Wistar rats weighing 210 ± 10 g, divided into the control group and 4 experimental groups (exposure to microwave radiation, exposure to hydrogen sulphide-containing gas, administration of ginger extracts, and exposure to microwave radiation with administration of ginger extracts). Index of the nature of the effect was determined in rat testis and epididymis homogenates based on the levels of middle molecules using a patented method. Results. Under exposure (microwave radiation, hydrogen sulphide-containing gas), the concentration of middle molecules significantly increased compared to the control (p < 0.001). Oral administration of ginger extracts caused an increase in the level of peptide components, accompanied by a 33.3 % decrease in polyene compounds (p < 0.001). Additionally, the study showed a strong direct correlation between the malonic dialdehyde levels in the homogenates of testicular and epididymal tissues and the total content of middle molecules, which was evidenced by a high correlation coefficient (r = +0.932; p < 0.01). The identified patterns were confirmed by the evaluation of the morphofunctional state of testicular tissue. Thus, changes in the levels of middle molecules in rat testis and epididymis homogenates allow us to assess the nature of exogenous effects (positive, negative or neutral) on spermatogenesis.
Downloads
References
Asadi A., Ghahremani R., Abdolmaleki A., Rajaei F. Role of Sperm Apoptosis and Oxidative Stress in Male Infertility: A Narrative Review // Int. J. Reprod. Biomed. 2021. Vol. 19, No 6. P. 493−504. https://doi.org/10.18502/ijrm.v19i6.9371
Loginov P.V., Teply D.L. Morphofunctional State of Reproductive System in Male Rats Under Conditions of Immobilization Stress // Естеств. науки. 2014. No 4 (49). С. 47−54.
Halpern J.A., Cooper C.A., Kasturi S.S., Brannigan R.E. Infection, Inflammation, and Immunological Causes of Male Infertility // Infertility in the Male / ed. by L.I. Lipshultz, S.S. Howards, C.S. Niederberger, D.J. Lamb. Cambridge: Cambridge University Press, 2023. P. 277−328. https://doi.org/10.1017/9781108937054.018
Barati E., Nikzad H., Karimian M. Oxidative Stress and Male Infertility: Current Knowledge of Pathophysiology and Role of Antioxidant Therapy in Disease Management // Cell. Mol. Life Sci. 2020. Vol. 77, No 1. P. 93–113. https://doi.org/10.1007/s00018-019-03253-8
Scarlata E., O’Flaherty C. Antioxidant Enzymes and Male Fertility: Lessons from Knockout Models // Antioxid. Redox Signal. 2020. Vo l. 32, No 8. P. 569–580. https://doi.org/10.1089/ars.2019.7985
Волчегорский И.А., Дятлов Д.А., Куликов Л.М., Львовская Е.И., Мельников И.Ю., Сашенков С.Л., Ефименко Г.П. «Средние молекулы» и продукты перекисного окисления липидов как система окисления неспецифических регуляторов гемодинамики у спортсменов-лыжников // Физиология человека. 1996. Т. 22, No 6. С. 106–110.
Шевченко С.С., Грекова А.И. Оценка уровня молекул средней и низкой массы и пептидов у детей раннего возраста при пневмонии и ОРВИ // Дет. болезни. 2015. Т. 14, No 1. С. 9–12. https://doi.org/10.22627/2072-8107-2015-14-1
Патент No 2740997 Российская Федерация, МПК A61K 35/00, A61K 36/906, C07C 45/90. Способ выделения полифенолов из корневищ имбиря: No 2019135539: заявл. 05.11.2019: опубл. 22.01.2021 / Николаев А.А., Логинов П.В., Мавлютова Е.Б., Голубкина С.А. 11 с.
Патент No 2691734 Российская Федерация, МПК G01N 33/483. Способ оценки характера экзогенных воздействий на сперматогенез у экспериментальных животных: No 2018144754: заявл. 17.12.2018: опубл. 18.06.2019 / Николаев А.А., Логинов П.В., Мавлютова Е.Б., Голубкина С.А. 11 с.
Стальная И.Д., Гаришвили Т.Г. Метод определения малонового диальдегида с помощью тиобарбитуровой кислоты // Современные методы в биохимии / под ред. акад. В.Н. Ореховича. М.: Медицина, 1977. С. 66–68.
Гланц C. Медико-биологическая статистика. М.: Практика, 1999. 459 с.
Мавлютова Е.Б., Памешова А.К. Эффекты полифенольных экстрактов имбиря на эндокринные взаимодействия гипофизарно-семенникового комплекса // Современные достижения молодых ученых в биологии, медицине и ветеринарии: сб. материалов II Всерос. науч.-практ. конф. с междунар. участием. Астрахань: Астрахан. гос. ун-т им. В.Н. Татищева, 2023. С. 57−58.
Thakur K., Garg N. Oxidative Stress and Antioxidant Enzymes in Cereals Under Abiotic Stress // Sustainable Remedies for Abiotic Stress in Cereals / ed. by A.A.H. Abdel Latef. Singapore: Springer, 2022. P. 51−82. https://doi.org/10.1007/978-981-19-5121-3_3
Dachanidze N., Burjanadze G., Kuchukashvili Z., Menabde K., Koshoridze N. Functioning of the Antioxidant System Under Psycho-Emotional Stress // J. Stress Physiol. Biochem. 2013. Vo l. 9, No 4. P. 122−131.
Кузнецова М.Г. Функционирование репродуктивной системы самцов крыс под влиянием электромагнитного излучения миллиметрового диапазона: дис. канд. ... биол. наук. Астрахань, 2009. 128 с.