Evaluation of the Biocompatibility of Cleaned Bovine Tendon in a Heterotopic Implantation Model
DOI:
https://doi.org/10.37482/2687-1491-Z070Keywords:
ligament prosthesis, bovine tendon, biocompatibility, method for treating xenografts, decellularization, supercritical carbon dioxide fluid, heterotopic implantationAbstract
Damage to the tendon-ligamentous apparatus places serious limitations on a personʼs physical activity. Injuries are especially common in physically healthy people leading an active lifestyle, such as athletes. To treat such injuries in orthopaedics and traumatology, autoplastic operations are performed or prostheses made of synthetic or biological materials are installed. The known treatment methods, in spite of their effectiveness, have a number of serious drawbacks, which often limit their use. Therefore, the search for new approaches and materials for plastic ligaments is an urgent task. Today, biotissue prostheses are accumulating advantages over their synthetic counterparts. The most promising raw material for biological ligament prostheses, due to its availability in the required quantity and optimal size, is the flexor and extensor calf tendons. This paper aimed to develop a method for treating xenogenic tendon to manufacture ligament prostheses and assessing its biocompatibility in a heterotopic implantation model. To manufacture a ligament prosthesis, the raw material was subjected to mechanical cleaning and chemical-physical treatment, as well as treatment with supercritical carbon dioxide fluid with the addition of the nonionic surfactant Tween 80, which together contributed to effective decellularization and removal of other biologically active components, while maintaining the physical and mechanical parameters and natural fiberarchitectonics of native raw materials. The biocompatible properties of ligament prosthesis specimens made from the flexor and extensor calf tendons using this method were evaluated in a model of heterotopic implantation into the subcutaneous adipose tissue of rats. The results obtained confirm the promising use of this material, treated according to the proposed method, in clinical practice.
For citation: Gurin M.V., Venediktov A.A., Glumskova Yu.A., Korneeva K.G. Evaluation of the Biocompatibility of Cleaned Bovine Tendon in a Heterotopic Implantation Model. Journal of Medical and Biological Research, 2021, vol. 9, no. 3, pp. 327–334. DOI: 10.37482/2687-1491-Z070
Downloads
References
Макаров С.А., Сергиенко С.А. Растяжения связок, сухожилий и мышц // РМЖ. 2001. № 23. С. 1046.
Климов А.В., Глухов А.А. Повреждения передней крестообразной связки коленного сустава у спортсменов. Факторы риска и основные механизмы получения травмы // NovaInfo. 2018. Т. 1, № 91. С. 139–146.
Заяц В.В., Дулаев А.К., Дыдыкин А.В., Ульянченко И.Н., Коломойцев А.В., Ковтун А.В. Анализ эффективности технологий артроскопической пластики передней крестообразной связки коленного сустава // Вестн. хирургии им. И.И. Грекова. 2017. Т. 176, № 2. С. 77–82.
Рыбин А.В., Кузнецов И.А., Румакин В.П., Нетылько Г.И., Ломая М.П. Экспериментально-морфологические аспекты несостоятельности сухожильных ауто- и аллотрансплантатов после реконструкции передней крестообразной связки коленного сустава в раннем послеоперационном периоде // Травматология и ортопедия. 2016. Т. 22, № 4. С. 60–75. DOI: 10.21823/2311-2905-2016-22-4-60-75
Белов Ю.В., Лысенко А.В., Леднев П.В., Салагаев Г.И. Применение заплаты из децеллюляризированного ксеноперикарда в хирургии брахиоцефальных артерий // Кардиология и сердечно-сосудистая хирургия. 2018. № 2. С. 31–34. DOI: 10.17116/kardio201811231-34
Сиваконь С.В., Девин И.В., Сретенский С.В., Чиж А.А., Космынин Д.А. Результаты применения протезов из ксеноперикарда в хирургическом лечении подкожных дегенеративных разрывов ахиллова сухожилия // Соврем. проблемы науки и образования. 2015. № 6. С. 128.
Манченко А.А., Михайлова И.П., Сандомирский Б.П. Морфология тканевой реакции у крыс при подкожной имплантации ксеноперикарда и створок аортального клапана свиньи, девитализированных криорадиационным способом // Клітинна та органна трансплантологія. 2016. Т. 4, № 1. С. 30–38.
Сергеевичев Д.С., Сергеевичева В.В., Субботовская А.И., Васильева М.Б., Докучаева А.А., Караськов А.М., Козлов В.А. Децеллюляризация как способ предотвращения активации иммунного ответа на аллогенные легочные клапаны сердца // Клеточная трансплантология и тканевая инженерия. 2013. Т. 8, № 4. С. 55–60.
Патент № 2665366 Российская Федерация, МПК A61F 2/08 (2006.01), A61L 27/36 (2006.01), A61L 27/50 (2006.01). Ксеногенные имплантаты мягких тканей и способы изготовления и использования: № 2014150029: заявл. 14.03.2013: опубл. 29.08.2018 / Педросо Д., Эли М. 46 с.
Патент № 2607185 Российская Федерация, МПК A61F 2/00 (2006.01). Способ получения ксенотрансплантата для офтальмохирургии: № 2015139247: заявл. 15.09.2015: опубл. 10.01.2017 / Бикбов М.М., Халимов А.Р., Зайнутдинова Г.Х., Кудоярова К.И., Лукьянова Е.Э. 9 с.
Isidan A., Liu S., Li P., Lashmet M., Smith L.J., Hara H., Cooper D.K.C., Ekser B. Decellularization Methods for Developing Porcine Corneal Xenografts and Future Perspectives // Xenotransplantations. 2019. Vol. 26, № 6. Art. № e12564. DOI: 10.1111/xen.12564
Бритиков Д.В., Чащин И.С., Хугаев Г.А., Бакулева Н.П. Девитализация аллографтов сверхкритическим диоксидом углерода и детергентами. Экспериментальная оценка // Сердечно-сосудистые заболевания. Бюл. НЦССХ им. А.Н. Бакулева РАМН. 2019. Т. 20, № 5. С. 402–409. DOI: 10.24022/1810-0694-2019-20-5-402-409
Sawada K., Terada D., Yamaoka T., Kitamura S., Fujisato T. Cell Removal with Supercritical Carbon Dioxide for Acellular Artificial Tissue // J. Chem. Technol. Biotechnol. 2008. Vol. 83, № 6. P. 943–949. DOI: 10.1002/jctb.1899
Ribeiro N., Soares G.C., Santos-Rosales V., Concheiro A., Alvarez-Lorenzo C., García-González C.A., Oliveira A.L. A New Era for Sterilization Based on Supercritical CO2 Technology // J. Biomed. Mater. Res. B Appl. Biomater. 2020. Vol. 108, № 2. DOI: 10.1002/jbm.b.34398
Залепугин Д.Ю., Тилькунова Н.А., Чернышова И.В., Власов М.И. Стерилизация в сверхкритических средах // Сверхкрит. флюиды. Теория и практика. 2015. Т. 10, № 4. С. 11–17.
Perrut M. Sterilization and Virus Inactivation by Supercritical Fluids (a Review) // J. Supercrit. Fluids. 2012. Vol. 66. P. 359–371. DOI: 10.1016/j.supflu.2011.07.007