DNA Damage in the Tissues of White Rats Exposed to Wildfire Smoke
DOI:
https://doi.org/10.37482/2687-1491-Z071Keywords:
wildfire smoke, genotoxic effect of smoke, transgenerational effect of smoke, DNA fragmentation, global DNA methylation, comet assay, white ratsAbstract
Wildfire smoke affects the health of the population of the entire planet and each year the situation is getting worse. Fire smoke has mutagenic, carcinogenic and other long-term effects. The aim of this paper was to study the genotoxic effect of wildfire smoke on male white rats and the transgenerational effect of wildfire smoke on their offspring. Smoke exposure simulation was performed on 40 male white rats in 200-litre exposure chambers. Forest litter, branches, fallen bark, and the upper layer of soil served as a combustible substrate. The exposure was carried out for 4 hours 5 days a week in the course of 4 weeks. Offspring of both sexes were obtained from the exposed animals and intact females. We analysed DNA fragmentation and global DNA methylation in the gonadal tissue and blood cells of the exposed animals immediately after the exposure and global DNA methylation in the blood cells of the offspring upon reaching sexual maturity. The research was performed using the comet assay with modifications to study global DNA methylation with MspI and HpaII restriction enzymes. The exposed animals showed an increased level of global DNA methylation in their blood cells. In male offspring, a decrease in the level of global DNA methylation in the blood cells was revealed, compared with the controls, while females showed no differences from the controls. The established facts of changes in global DNA methylation after exposure to wildfire smoke require further in-depth research, since the mechanism of the development of this phenomenon remains rather unclear.
For citation: Kapustina E.A., Vokina V.A., Andreeva E.S. DNA Damage in the Tissues of White Rats Exposed to Wildfire Smoke. Journal of Medical and Biological Research, 2021, vol. 9, no. 3, pp. 335–342. DOI: 10.37482/2687-1491-Z071
Downloads
References
Cascio W.E. Wildland Fire Smoke and Human Health // Sci. Total Environ. 2018. Vol. 15, № 624. Р. 586–595. DOI: 10.1016/j.scitotenv.2017.12.086
Liu J.C., Wilson A., Mickley L.J., Ebisu K., Sulprizio M.P., Wang Y., Peng R.D., Yue X., Dominici F., Bell M.L. Who Among the Elderly Is Most Vulnerable to Exposure to and Health Risks of Fine Particulate Matter from Wildfire Smoke? // Am. J. Epidemiol. 2017. Vol. 186, № 6. Р. 730–735. DOI: 10.1093/aje/kwx141
Reid C.E., Considine E.M., Watson G.L., Telesca D., Pfister G.G., Jerrett M. Associations Between Respiratory Health and Ozone and Fine Particulate Matter During a Wildfire Event // Environ. Int. 2019. Vol. 129. Р. 291–298. DOI: 10.1016/j.envint.2019.04.033
Lewtas J., Claxton L., Mumford J., Lofroth G. Bioassay of Complex Mixtures of Indoor Air Pollutants // IARC Sci. Publ. 1993. Vol. 109. Р. 85–95.
Kim Y.H., Warren S.H., Krantz Q.T., King C., Jaskot R., Preston W.T., George B.J., Hays M.D., Landis M.S., Higuchi M., DeMarini D.M., Gilmour M.I. Mutagenicity and Lung Toxicity of Smoldering vs. Flaming Emissions from Various Biomass Fuels: Implications for Health Effects from Wildland Fires // Environ. Health Perspect. 2018. Vol. 126, № 1. Art. № 017011. DOI: 10.1289/EHP2200
Вокина В.А., Новиков М.А., Алексеенко А.Н., Соседова Л.М., Капустина Е.А., Богомолова Е.С., Елфимова Т.А. Экспериментальная оценка влияния дыма лесных пожаров на репродуктивную функцию мелких млекопитающих и их потомство // Изв. Иркут. гос. ун-та. Сер.: Биология. Экология. 2019. Т. 29. С. 88–98. DOI: 10.26516/2073-3372.2019.29.88
Zhanataev A.K., Anisina E.A., Chayka Z.V., Miroshkina I.A., Durnev A.D. The Phenomenon of Atypical DNA Comets // Cell Tissue Biol. 2017. Vol. 11, № 4. Р. 286–292. DOI: 10.1134/S1990519X17040113
Wentzel J.F., Gouws C., Huysamen C., van Dyk E., Koekemoer G., Pretorius P.J. Assessing the DNA Methylation Status of Single Cells with the Comet Assay // Anal. Biochem. 2010. Vol. 400, № 2. Р. 190–194. DOI: 10.1016/j.ab.2010.02.008
Ewa B., Danuta M.Š. Polycyclic Aromatic Hydrocarbons and PAH-Related DNA Adducts // J. Appl. Genet. 2017. Vol. 58, № 3. Р. 321–330. DOI: 10.1007/s13353-016-0380-3
Muthusamy S., Peng C., Ng J.C. Genotoxicity Evaluation of Multi-Component Mixtures of Polyaromatic Hydrocarbons (PAHs), Arsenic, Cadmium, and Lead Using Flow Cytometry Based Micronucleus Test in HepG2 Cells // Mutation Research. Genetic Toxicology and Environmental Mutagenesis. 2018. Vol. 827. Р. 9–18. DOI: 10.1016/j.mrgentox.2018.01.002
Miller S.R., Cherrington N.J. Transepithelial Transport Across the Blood-Testis Barrier // Reproduction. 2018. Vol. 156, № 6. Р. 187–194. DOI: 10.1530/REP-18-0338
DeFlorio-Barker S., Crooks J., Reyes J., Rappold A.G. Cardiopulmonary Effects of Fine Particulate Matter Exposure Among Older Adults, During Wildfire and Non-Wildfire Periods, in the United States 2008–2010 // Environ. Health Perspect. 2019. Vol. 127, № 3. Art. № 37006. DOI: 10.1289/EHP3860
Krejcova L., Richtera L., Hynek D., Labuda J., Adam V. Current Trends in Electrochemical Sensing and Biosensing of DNA Methylation // Biosens. Bioelectron. 2017. Vol. 97. Р. 384–399. DOI: 10.1016/j.bios.2017.06.004
Fernández-Santiago R., Merkel A., Castellano G., Heath S., Raya A., Tolosa E., Martí M.-J., Consiglio A., Ezquerra M. Whole-Genome DNA Hyper-Methylation in iPSC-Derived Dopaminergic Neurons from Parkinson’s Disease Patients // Clin. Epigenet. 2019. Vol. 11, № 1. Art. № 108. DOI: 10.1186/s13148-019-0701-6
Thalheim T., Herberg M., Galle J. Linking DNA Damage and Age-Related Promoter DNA Hyper-Methylation in the Intestine // Genes. 2018. Vol. 9, № 1. Art. № 17. DOI: 10.3390/genes9010017
Taleat Z., Mathwig K., Sudhölter E.J.R., Rassaei L. Detection Strategies for Methylated and Hypermethylated DNA // TrAC Trends Anal. Chem. 2015. Vol. 66. P. 80–89. DOI: 10.1016/j.trac.2014.11.013
Potabattula R., Dittrich M., Schorsch M., Hahn T., Haaf T., El Hajj N. Male Obesity Effects on Sperm and Next- Generation Cord Blood DNA Methylation // PLoS One. 2019. Vol. 14, № 6. Art. № e0218615. DOI: 10.1371/journal. pone.0218615
Watkins A.J., Dias I., Tsuro H., Allen D., Emes R.D., Moreton J., Wilson R., Ingram R.J.M., Sinclair K.D. Paternal Diet Programs Offspring Health Through Sperm- and Seminal Plasma-Specific Pathways in Mice // Proc. Natl. Acad. Sci. USA. 2018. Vol. 115, № 40. Р. 10064–10069. DOI: 10.1073/pnas.1806333115
Pogribny I., Koturbash I., Tryndyak V., Hudson D., Stevenson S.M.L., Sedelnikova O., Bonner W., Kovalchuk O. Fractionated Low-Dose Radiation Exposure Leads to Accumulation of DNA Damage and Profound Alterations in DNA and Histone Methylation in the Murine Thymus // Mol. Cancer Res. 2005. Vol. 3, № 10. Р. 553–561. DOI: 10.1158/1541-7786.MCR-05-0074
Chan J.C., Nugent B.M., Bale T.L. Parental Advisory: Maternal and Paternal Stress Can Impact Offspring Neurodevelopment // Biol. Psychiatry. 2018. Vol. 83, № 10. Р. 886–894. DOI: 10.1016/j.biopsych.2017.10.005
Elmhiri G., Gloaguen C., Grison S., Kereselidze D., Elie C., Tack K., Benderitter M., Lestaevel P., Legendre A., Souidi M. DNA Methylation and Potential Multigenerational Epigenetic Effects Linked to Uranium Chronic Low Dose Exposure in Gonads of Males and Females Rats // Toxicol. Lett. 2018. Vol. 282. P. 64–70. DOI: 10.1016/j.toxlet