Tautomers of the Orotate Anion Have Anti-Inflammatory Effects in the Correction of Drug-Induced Hepatitis in Rats
DOI:
https://doi.org/10.37482/2687-1491-Z074Keywords:
tautomeric forms of orotic acid, drug-induced hepatitis, blood cells, Kupffer cells, CD68 liver macrophages, hepatocytesAbstract
The purpose of this paper was to conduct a comparative experimental study of the anti-inflammatory effects of tautomeric forms of orotic acid in the correction of drug-induced hepatitis in rats. Materials and Methods. A total of 40 rats (Rattus norvegicus Berk.) were randomly divided into 5 groups: control group (n = 10); intervention group with drug-induced hepatitis (n = 15); animals with drug-induced hepatitis who were injected with orotic acid (ОА) tautomers: initial oxo-form (n = 5), hydroxy-form (n = 5) and dihydroxyform (n = 5) at a dose of 0.5 g/kg body weight a day in the course of 14 days. The tautomers were obtained by mechanical activation in a planetary ball mill AGO-2C for 1 (hydroxy-form) and 6 (dihydroxyform) hours. In the blood of animals of all experimental groups, the content of leukocytes, granulocytes, lymphocytes, and monocytes was determined. Liver sections were stained with hematoxylin and eosin to assess the histo- and cytostructure of the tissues, and immunohistochemically using a set of monoclonal antibodies to detect the expression of the CD68+ macrophage marker. Results. It was found that when correcting drug-induced hepatitis with the hydroxy-form of OA, the severity of leuko- and monocytosis decreased and the number of lymphocytes was restored. The number of CD68+ macrophages with a pro-inflammatory phenotype decreased in the group receiving the hydroxy-form of OA (by a factor of 1.32; p = 0.019), but remained unchanged at the administration of oxo- and dihydroxy-forms of OA. The intensity of reaction product expression decreased by a factor of 1.5 in the group administered with the initial drug and by a factor of 1.9 in animals administered with mechanically activated drugs (p = 0.0001). Thus, the obtained data indicate a pronounced anti-inflammatory activity of the hydroxyform of OA, which can substantiate its use as a hepatoprotective agent.
For citation: Pazinenko K.A., Chuchkova N.N., Smetanina M.V. Tautomers of the Orotate Anion Have Anti-Inflammatory Effects in the Correction of Drug-Induced Hepatitis in Rats. Journal of Medical and Biological Research, 2021, vol. 9, no. 4, pp. 366–373. DOI: 10.37482/2687-1491-Z074
Downloads
References
Громова О.А., Торшин И.Ю., Калачева А.Г. Метаболомный компендиум по магния оротату // Эффектив. фармакотерапия. 2015. № 44. С. 14–26.
Патент № 2 541 806 C1 Российская Федерация, МПК A61K 31/4166. Способ получения препарата, содержащего аморфно-кристаллические соли оротовой кислоты: № 2013146164/15: заявл. 16.10.2013: опубл. 20.02.2015 / Аксенова В.В., Михайлова С.С., Собенникова М.В., Мухгалин В.В., Ладьянов В.И., Канунников М.М., Чучкова Н.Н., Соловьев А.А., Пермяков А.А., Сметанина М.В. 12 с.
Канунникова О.М., Карбань О.В., Чучкова Н.Н., Мухгалин В.В., Комиссаров В.Б., Гильмутдинов Ф.З. Получение, физико-химические и биологические свойства таутомерных наноформ препарата «Магнерот» // Нанотехнологии: наука и производство. 2014. № 4. С. 80–88.
de Cássia Zaghi Compri J., Andres Felli V.M., Lourenço F.R., Takatsuka T., Fotaki N., Löbenberg R., Bou-Chacra N.A., Barros de Araujo G.L. Highly Water-Soluble Orotic Acid Nanocrystals Produced by High-Energy Milling // J. Pharm. Sci. 2019. Vol. 108, № 5. Р. 1848–1856. DOI: 10.1016/j.xphs.2018.12.015
Hassani A., Hussain S.A., Abdullah N., Kamarudin S., Rosli R. Antioxidant Potential and Angiotensin-Converting Enzyme (ACE) Inhibitory Activity of Orotic Acid-Loaded Gum Arabic Nanoparticles // AAPS Pharm. Sci. Tech. 2019. Vol. 20, № 2. Art. № 53. DOI: 10.1208/s12249-018-1238-2
Чучкова Н.Н., Тукмачева К.А., Сметанина М.В., Канунникова О.М., Сергеев В.Г., Чучков В.М., Кормилина Н.В. Характеристика популяции CD68+ клеток тимуса крыс при введении таутомерных форм магния оротата на фоне моделируемого дефицита магния // Журн. анатомии и гистопатологии. 2019. Т. 8, № 1. С. 82–88. DOI: 10.18499/2225-7357-2019-8-1-82-88
Ju C., Tacke F. Hepatic Macrophages in Homeostasis and Liver Diseases: From Pathogenesis to Novel Therapeutic Strategies // Cell. Mol. Immunol. 2016. Vol. 13, № 3. Р. 316–327. DOI: 10.1038/cmi.2015.104
Li P., He K., Li J., Liu Z., Gong J. The Role of Kupffer Cells in Hepatic Diseases // Mol. Immunol. 2017. Vol. 85. Р. 222–229. DOI: 10.1016/j.molimm.2017.02.018
Sato K., Hall C., Glaser S., Francis H., Meng F., Alpini G. Pathogenesis of Kupffer Cells in Cholestatic Liver Injury // Am. J. Pathol. 2016. Vol. 186, № 9. Р. 2238–2247. DOI: 10.1016/j.ajpath.2016.06.003
van der Heide D., Weiskirchen R., Bansal R. Therapeutic Targeting of Hepatic Macrophages for the Treatment of Liver Diseases // Front. Immunol. 2019. Vol. 10. Art. № 2852. DOI: 10.3389/fimmu.2019.02852
Tian S., Chen S.Y. Macrophage Polarization in Kidney Diseases // Macrophage (Houst.). 2015. Vol. 2, № 1. Art. № e679. DOI: 10.14800/macrophage.679
You Q., Holt M., Yin H., Li G., Hu C.-J., Ju C. Role of Hepatic Resident and Infiltrating Macrophages in Liver Repair After Acute Injury // Biochem. Pharmacol. 2013. Vol. 86. Р. 836–843. DOI: 10.1016/j.bcp.2013.07.006
Kubes P., Jenne C. Immune Responses in the Liver // Annu. Rev. Immunol. 2018. Vol. 36. Р. 247–277. DOI: 10.1146/annurev-immunol-051116-052415
Brocks D.R., Mehvar R. Stereoselectivity in the Pharmacodynamics and Pharmacokinetics of the Chiral Antimalarial Drugs // Clin. Pharmacokinet. 2003. Vol. 42, № 15. Р. 1359–1382. DOI: 10.2165/00003088-200342150-00004
Gregg R.A., Baumann M.H., Partilla J.S., Bonano J.S., Vouga A., Tallarida C.S., Velvadapu V., Smith G.R., Peet M.M., Reitz A.B., Negus S.S., Rawls S.M. Stereochemistry of Mephedrone Neuropharmacology: Enantiomer-Specific Behavioural and Neurochemical Effects in Rats // Br. J. Pharmacol. 2015. Vol. 172, № 3. Р. 883–894. DOI: 10.1111/bph.12951
Ohkura K., Tabata A., Uto Y., Hori H. Correlation Between Radiosensitizing Activity and the Stereo-Structure of the TX-2036 Series of Molecules // Anticancer Res. 2019. Vol. 39, № 8. Р. 4479–4483. DOI: 10.21873/anticanres.13622
Martins M.L., Ignazzi R., Eckert J., Watts B., Kaneno R., Zambuzzi W.F., Daemen L., Saeki M.J., Bordallo H.N. Restricted Mobility of Specific Functional Groups Reduces Anti-Cancer Drug Activity in Healthy Cells // Sci. Rep. 2016. Vol. 6. Art. № 22478. DOI: 10.1038/srep22478
Ravishankar D., Salamah M., Akimbaev A., Williams H.F., Albadawi D.A.I., Vaiyapuri R., Greco F., Osborn H.M.I., Vaiyapuri S. Impact of Specific Functional Groups in Flavonoids on the Modulation of Platelet Activation // Sci. Rep. 2018. Vol. 8, № 1. Art. № 9528. DOI: 10.1038/s41598-018-27809-z
Ramadan W.S., Saleh E.M., Menon V., Vazhappilly C.G., Abdu-Allah H.H.M., El-Shorbagi A.A., Mansour W., El-Awady R. Induction of DNA Damage, Apoptosis and Cell Cycle Perturbation Mediate Cytotoxic Activity of New 5-Aminosalicylate-4-Thiazolinone Hybrid Derivatives // Biomed. Pharmacother. 2020. Vol. 131. Art. № 110571. DOI: 10.1016/j.biopha.2020.110571
Чучкова Н.Н., Канунников М.М., Сметанина М.В., Комиссаров В.Б., Соловьев А.А. Сравнительное исследование эффективности применения таутомеров оротата магния для компенсации дефицита магния. Ч. I. Влияние таутомеров оротата магния на изолированные клетки лабораторных животных и человека // Урал. мед. журн. 2018. № 4(159). С. 141–146.