Circadian Rhythm Factor in Relation to the Analysis And Interpretation of Infrared Thermography Results in the Arctic (Review)
DOI:
https://doi.org/10.37482/2687-1491-Z082Keywords:
Arctic, circadian rhythms, infrared thermography, light intensity, melatonin, neurotransmitter, suprachiasmatic nucleiAbstract
The number of studies explaining the role of environmental factors in research using infrared thermography in the Arctic is still limited. This article is focused on circadian rhythms, which can influence both the analysis and interpretation of infrared thermography results in the Arctic. Literature published between 1981 and 2019 was selected with the help of PubMed search engine by means of a systematic search by the keyword infrared thermography using the PRISMA system. Having studied the abstracts of relevant open access articles, we selected a total of 81 papers: 40 American, 15 Russian, 11 Canadian, 6 Swedish, 4 Danish, 3 Finnish, and 2 Norwegian. Having assessed the materials and methods against the area of application (medicine and dentistry), we found 12 articles in full compliance with the selection criteria. In conclusion, taking into account different day lengths and light intensities in the Arctic, we point out three circadian rhythm mediators affecting its physiological activity. These are as follows: light of sufficient intensity, suprachiasmatic nuclei and neurotransmitters. Their influence is often reduced in the summer and is linked with changes in skin temperature. Therefore, it is important for researchers to consider time, season, and sleep patterns of the subjects during the selection process in order to obtain accurate temperature measurements using infrared thermography.
For citation: Nasution A.I., Pankov M.N., Kir’yanov A.B. Circadian Rhythm Factor in the Analysis and Interpretation of Infrared Thermography Results in the Arctic (Review). Journal of Medical and Biological Research, 2021, vol. 9, no. 4, pp. 444–453. DOI: 10.37482/2687-1491-Z082
Downloads
References
Romanovsky A.A. Skin Temperature: Its Role in Thermoregulation // Acta Physiol. (Oxf.). 2014. Vol. 210. P. 498–507. DOI: 10.1111/apha.12231
Lahiri B.B., Bagavathiappan S., Jayakumar T., Philip J. Medical Applications of Infrared Thermography: A Review // Infrared Phys. Technol. 2012. Vol. 55, № 1. P. 221–235. DOI: 10.1016/j.infrared.2012.03.007
Кожевникова И.С., Ермошина Н.А., Панков М.Н. Методы анализа и интерпретации термоизображений в медицинской диагностике // Биомед. радиоэлектроника. 2017. № 3. С. 22–31.
Шейко Е.А., Козель Ю.Ю., Триандафилиди Е.И., Шихлярова А.И. Дистанционная инфракрасная термография как вспомогательный метод в диагностике и лечении гемангиом у детей до года // Международ. журн. приклад. и фундам. исследований. 2015. № 9-2. Р. 302–304.
Hedlund C., Blomstedt Y., Schumann B. Association of Climatic Factors with Infectious Diseases in the Arctic and Subarctic Region: A Systematic Review // Glob. Health Action. 2014. № 7. Art. № 24161. DOI: 10.3402/gha.v7.24161
Насутион А.И., Панков М.Н., Кирьянов А.Б., Старцева Л.Ф. Influence of Shivering, Hypothermia and Circadian Rhythms on the Features of Research Using Infrared Thermography in the Arctic (Review) = Влияние дрожи, гипотермии и циркадного ритма на особенности проведения исследований с помощью метода инфракрасной термографии в условиях Арктики (обзор) // Журн. мед.-биол. исследований. 2020. Т. 8, № 1. С. 89–98. DOI: 10.17238/issn2542-1298.2020.8.1.89
Arendt J. Biological Rhythms During Residence in Polar Regions // Chronobiol. Int. 2012. Vol. 29, № 4. Р. 379–394. DOI: 10.3109/07420528.2012.668997
Niedzielska I., Pawelec S., Puszczewicz Z. The Employment of Thermographic Examinations in the Diagnostics of Diseases of the Paranasal Sinuses // Dentomaxillofac. Radiol. 2017. Vol. 46, № 6. Art. № 20160367. DOI: 10.1259/dmfr.20160367
Cardone D., Merla A. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychophysiology in the Neurosciences // Sensors (Basel). 2017. Vol. 17, № 5. Art. № 1042. DOI: 10.3390/s17051042
Priego Quesada J.I., Martínez Guillamón N., Cibrián Ortiz de Anda R.M., Psikuta A., Annaheim S., Rossi R.M., Corberán Salvador J.M., Pérez-Soriano P., Salvador Palmer R. Effect of Perspiration on Skin Temperature Measurements by Infrared Thermography and Contact Thermometry During Aerobic Cycling // Infrared Phys. Technol. 2015. Vol. 72. P. 68–76. DOI: 10.1016/j.infrared.2015.07.008
Carpes F.P., Mello-Carpes P.B., Priego Quesada J.I., Pérez-Soriano P., Salvador Palmer R., Ortiz de Anda R.M.C. Insights on the Use of Thermography in Human Physiology Practical Classes // Adv. Physiol. Educ. 2018. Vol. 42, № 3. P. 521–525. DOI: 10.1152/advan.00118.2018
Friborg O., Bjorvatn B., Amponsah B., Pallesen S. Associations Between Seasonal Variations in Day Length (Photoperiod), Sleep Timing, Sleep Quality and Mood: A Comparison Between Ghana (5°) and Norway (69°) // J. Sleep Res. 2012. Vol. 21, № 2. P. 176–184. DOI: 10.1111/j.1365-2869.2011.00982.x
Bano-Otalora B., Martial F., Harding C., Bechtold D.A., Allen A.E., Brown T.M., Belle M.D.C., Lucas R.J. Daytime Light Enhances the Amplitude of Circadian Output in a Diurnal Mammal // bioRxiv. 2020. DOI: 10.1101/2020.06.22.164194
American Academy of Thermology – AAT. Guidelines for Dental-Oral and Systemic Health Infrared Thermography // Pan Am. J. Med. Thermol. 2015. Vol. 2, № 1. P. 44–53. DOI: 10.18073/2358-4696/pajmt.v2n1p44-53
Francis G., Bishop L., Luke C., Middleton B., Williams P., Arendt J. Sleep During the Antarctic Winter: Preliminary Observations on Changing the Spectral Composition of Artificial Light // J. Sleep Res. 2008. Vol. 17. P. 354–360. DOI: 10.1111/j.1365-2869.2008.00664.x
Kawasaki A., Wisniewski S., Healey B., Pattyn N., Kunz D., Basner M., Münch M. Impact of Long-Term Daylight Deprivation on Retinal Light Sensitivity, Circadian Rhythms and Sleep During the Antarctic Winter // Sci. Rep. 2018. Vol. 8. Art. № 16185. DOI: 10.1038/s41598-018-33450-7
Harding E.C., Franks N.P., Wisden W. The Temperature Dependence of Sleep // Front. Neurosci. 2019. Vol. 13. Art. № 336. DOI: 10.3389/fnins.2019.00336
Czeisler C., Buxton O.M., Khalsa S.B.S. The Human Circadian Timing System and Sleep-Wake Regulation // Principles and Practice of Sleep Medicine / ed. by M.H. Kryger, T. Roth, W.C. Dement. Philadelphia, 2005. P. 375–394.
Lucas R.J., Peirson S.N., Berson D.M., Brown T.M., Cooper H.M., Czeisler C.A., Figueiro M.G., Gamlin P.D., Lockley S.W., O’Hagan J.B., Price L.L., Provencio I., Skene D.J., Brainard G.C. Measuring and Using Light in the Melanopsin Age // Trends Neurosci. 2014. Vol. 37, № 1. Р. 1–9. DOI: 10.1016/j.tins.2013.10.004
Fernández-Cuevas I., Bouzas Marins J.C., Arnáiz Lastras J., Gómez Carmona P.M., Piñonosa Cano S., García-Concepción M.Á., Sillero-Quintana M. Classification of Factors Influencing the Use of Infrared Thermography in Humans: A Review // Infrared Phys. Technol. 2015. Vol. 71. P. 28–55. DOI: 10.1016/j.infrared.2015.02.007
Nasution A.I., Pankov M.N. The Advantage and Basic Approach of Infrared Thermography in Dentistry // J. Int. Dent. Med. Res. 2020. Vol. 13, № 2. Р. 731–737.
Bhowmik M.K., Bardhan S., Das K., Bhattacharjee D., Nath S. Pain Related Inflammation Analysis Using Infrared Images // Thermosense: Thermal Infrared Applications XXXVIII. SPIE, 2016. Vol. 9861. Art. № 986116. DOI: 10.1117/12.2223425
Reghunandanan V., Reghunandanan R. Neurotransmitters of the Suprachiasmatic Nuclei // J. Circadian Rhythms. 2006. Vol. 4. Art. № 2. DOI: 10.1186/1740-3391-4-2
Menet J., Vuillez P., Jacob N., Pévet P. Intergeniculate Leaflets Lesion Delays but Does Not Prevent the Integration of Photoperiodic Change by the Suprachiasmatic Nuclei // Brain Res. 2001. Vol. 906, № 1-2. P. 176–179. DOI: 10.1016/s0006-8993(01)02518-5
Jones J.R., Simon T., Lones L., Herzog E.D. SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System // J. Neurosci. 2018. Vol. 38, № 37. P. 7986–7995. DOI: 10.1523/JNEUROSCI.1322-18.2018
Mieda M. The Network Mechanism of the Central Circadian Pacemaker of the SCN: Do AVP Neurons Play a More Critical Role Than Expected? // Front. Neurosci. 2019. Vol. 13. Art. № 139. DOI: 10.3389/fnins.2019.00139
Okamoto-Mizuno K., Mizuno K. Effects of Thermal Environment on Sleep and Circadian Rhythm // J. Physiol. Anthropol. 2012. Vol. 31. Art. № 14. DOI: 10.1186/1880-6805-31-14
Zisapel N. New Perspectives on the Role of Melatonin in Human Sleep, Circadian Rhythms and Their Regulation // Br. J. Pharmacol. 2018. Vol. 175, № 16. Р. 3190–3199. DOI: 10.1111/bph.14116
Danilenko K.V., Kobelev E., Semenova E.A., Aftanas L.I. Summer-Winter Difference in 24-h Melatonin Rhythms in Subjects on a 5-Workdays Schedule in Siberia Without Daylight Saving Time Transitions // Physiol. Behav. 2019. Vol. 212. Art. № 112686. DOI: 10.1016/j.physbeh.2019.112686
Kräuchi K., Cajochen C., Wirz-Justice A. Circadian and Homeostatic Regulation of Core Body Temperature and Alertness in Humans: What Is the Role of Melatonin? // Circadian Clocks and Entrainment / ed. by K.-I. Honma, S. Honma. Vol. 7. Sapporo: Hokkaido University Press, 1998. P. 131–146.