Seasonal Dynamics of Content of Antioxidant System Component in Needles of Scots Pine (Pinus sylvestris L.) Trees Situated in the Local Warming Impact Zone

Authors

DOI:

https://doi.org/10.37482/0536-1036-2023-2-38-57

Keywords:

Pinus sylvestris, carotenoids, flavonols, catechins, ascorbic acid, peroxidase activity, climate warming, antioxidant system

Abstract

The seasonal changes in a period of low temperatures and characteristic correlations of some antioxidant system (AOS) components in pine needles influenced by a gas flare are investigated in this study. The parameters taken are total water content (TWC) in needles, peroxidase activity (AP) and selected elements of the antioxidant system of needles, such as content of carotenoids (Car), ascorbic acid (AA), catechins (Cat) and flavanols (Fl). The needles come from Scots pine trees (Pinus sylvestris L.), which grow in a gradient of environmental conditions formed in the zone of thermal field of the gas flare impact (at various distances). The gas flare is situated on the territory of the Khanty-Mansiysk Autonomous Okrug (UGRA) of Russia. Three hypotheses were subject to verification: 1) the thermal field of the gas flare during the low temperature period affects the water exchange and the AOS state of needles; 2) increase in temperature of the environment in the flare impact zone during the autumn-winter period causes the decrease in amount of moisture in needles, which is a trait of oxidative stress in cells; 3) in the functioning of а needle’s AOS, there are correlations between its components, which values depend on distance from the gas flare and environment created by it. It was found that in the thermal field gradient of the flare, there is neither an additional reduction in TWC in needles compared to the background nor signs of change in the state of AOS corresponding to the oxidative stress in the cells. The greatest impact of the gas flare on characteristics of the physiological state of pine needles is observed in the section closest to the flare. It reveals in the higher values of AP, TWC, Car and decrease in concentration of Fl and AA. The seasonal dynamics of the studied traits values do not correlate with the temperature of the environment. It indicates the indirect effect on the regulation of needle’s AOS activity. The factor and correlation analysis of the data indicate a difference in physiological state of pine needles at different distances from the flare. There is no domination of any processes in the functioning of AOS components. The observed correlations between the studied properties change according to distance to the flare. The most stable is a negative AP relationship with ofter parameters, which rise with the increased distance from the flare. The consistency degree of separate AOS components functioning is maximal in background conditions and decreases when approaching the flare. This fact is explained by the modifying effect of the flare on physiological and biochemical processes of the needle’s adaptation to specific climatic conditions of the environment.
For citation: Shavnin S.A., Yusupov I.A., Montile A.A., Golikov D.Yu., Marina N.V. Seasonal Dynamics of Content of Antioxidant System Components in Needles of Scots Pine (Pinus sylvestris L.) Trees Situated in the Local Warming Impact Zone. Lesnoy Zhurnal = Russian Forestry Journal, 2023, no. 2, pp. 38–57. (In Russ.). https://doi.org/10.37482/0536-1036-2023-2-38-57

Downloads

Download data is not yet available.

Author Biographies

Sergey A. Shavnin, Institute Botanic Garden UBRAS, Ural Branch of the Russian Academy of Sciences

Doctor of Biology, Prof., Leading Research Scientist; ResearcherID: L-3389-2018

Irek A. Yusupov, Institute Botanic Garden UBRAS, Ural Branch of the Russian Academy of Sciences

Candidate of Agriculture, Research Scientist; ResearcherID: AAK-4578-2021

Andrey A. Montile, Institute Botanic Garden UBRAS, Ural Branch of the Russian Academy of Sciences

Junior Research Scientist; ResearcherID: G-4617-2019

Dmitry Yu. Golikov, Institute Botanic Garden UBRAS, Ural Branch of the Russian Academy of Sciences

Candidate of Agriculture, Research Scientist; ResearcherID: D-2177-2016

Nataliya V. Marina, Ural State Forest Engineering University

Candidate of Chemistry, Assoc. Prof.; ResearcherID: AAL-1754-2021

References

Доклад об особенностях климата на территории Российской Федерации за 2018 год. М.: Росгидромет, 2019. 79 с. A Report on Climate Features on the Territory of the Russian Federation in 2018. Moscow, ROSHYDROMET Publ., 2019. 79 p. (In Russ.).

Землянухина О.А., Калаев В.Н., Воронина В.С. Сравнительный анализ методов определения активности и изоферментного спектра пероксидаз различного происхождения // Успехи современного естествознания. 2017. № 9. С. 13–22. Zemlyanukhina O.A., Kalayev V.N., Voronina V.S. Comparative Analysis of the Methods Used to Determine the Activity and Isozyme Spectrum of the Different Origin Peroxidases. Uspekhi sovremennogo estestvoznaniya = Advances in Current Natural Sciences, 2017, no. 9, pp. 13–22. (In Russ.). https://doi.org/10.17513/use.36534

Кузнецов В.В., Дмитриева Г.А. Физиология растений. М.: Высш. шк., 2005. 736 с. Kuznetsov V.V., Dmitriyeva G.A. Plant Physiology. Moscow, Vysshaya shkola Publ., 2005, 736 p. (In Russ.).

Лобанова А.А., Будаева В.В., Сакович Г.В. Исследование биологически активных флавоноидов в экстрактах из растительного сырья // Химия растит. сырья. 2004. № 1. С. 47–52. Lobanova A.A., Budaeva V.V., Sakovich G.V. Investigation of Biologically Active Flavonoids in Extracts from Plant Raw Materials. Khimiya Rastitel'nogo Syr'ya = Chemistry of Plant Raw Materials, 2004, no. 1. pp. 47–52. (In Russ.).

Меньщикова Е.Б., Зенков Н.К. Антиоксиданты и ингибиторы радикальных окислительных процессов // Успехи современной биологии. 1993. Т. 113, вып. 4. С. 442–455. Menshchikova E.B., Zenkov N.K. Antioxidants and Inhibitors of Radical Oxidative Processes. Uspekhi Sovremennoy Biologii = Biology Bulletin Reviews, 1993, vol. 113, no. 4, pp. 442–455. (In Russ.).

Рогожин В.В., Верхотуров В.В. Аскорбиновая кислота – медленно окисляемый субстрат пероксидазы хрена // Биохимия. 1997. Т. 62, вып. 12. С. 1678–1682. Rogozhin V.V., Verkhoturov V.V. Ascorbic Acid Is a Slowly Oxidized Substrate of Horseradish Peroxidase. Biokhimiya = Biochemistry, 1997, vol. 62, no. 12, pp. 1678–1682. (In Russ.).

Титов А.Ф., Акимова Т.В., Таланова В.В., Топчиева Л.В. Устойчивость растений в начальный период действия неблагоприятных температур. М.: Наука, 2006. 143 с. Titov A.F., Akimova T.V., Talanova V.V., Topchiyeva L.V. Plant Resistance in the Initial Period of Exposure to Unfavorable Temperatures. Moscow, Nauka Publ., 2006, 143 p. (In Russ.).

Федураев П.В., Скрыпник Л.Н., Масленников П.В., Чупахина Г.Н., Таценко Н.А. Особенности накопления фенольных соединений в растениях некоторых видов рода Rumex L. // Химия растит. сырья. 2017. № 3. С. 123–130. Fedurayev P.V., Skrypnik L.N., Maslennikov P.V., Chupakhina G.N., Tatsenko N.A. Specialty of Accumulation of Phenolic Compounds in Plants of Some Species of the Genus Rumex L. Khimiya Rastitel'nogo Syr'ya = Chemistry of Plant Raw Materials, 2017, no. 3, pp. 123–130. (In Russ.). https://doi.org/10.14258/jcprm.201703755

Цандекова О.Л., Неверова О.А., Колмогорова Е.Ю. Роль антиоксидантной системы в устойчивости сосновых насаждений в условиях породного угольного отвала // Изв. Сам. НЦ РАН. 2013. Т. 15, № 3. С. 245–248. Tsandekova O.L., Neverova O.A., Kolmogorova E.Yu. The Role of Antioxidant System in Stability of Pine Plantations in the Conditions of Rock Coal Dump. Izvestia of RAS SamSC, 2013, vol. 15, no. 3, pp. 245-248. (In Russ.).

Шавнин С.А., Юсупов И.А., Артемьева Е.П., Голиков Д.Ю. Влияние повышения температуры среды на формирование наземной растительности вблизи газового факела // Изв. вузов. Лесн. журн. 2006. № 1. С. 22–28. Shavnin S.A., Yusupov I.A., Artemyeva E.P., Golikov D.Yu. The Influence of Increase of Ambient Temperature on the Formation of Terrestrial Vegetation Near a Gas Flare. Lesnoy Zhurnal = Russian Forestry Journal, 2006, no. 1, pp. 22–28. (In Russ.). http://lesnoizhurnal.ru/apxiv/2006/%E2%84%961-2006.pdf

Apel K., Hirt H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 2004, vol. 55, no. 1, pp. 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Gould K.S., Lister C. Flavonoid Functions in Plants. Flavonoids, CRC Press, 2005, pp. 397–441. https://doi.org/10.1201/9781420039443.ch8

Ivanov Y.V., Savochkin Y.V., Kuznetsov V.V. Scots Pine as a Model Plant for Studying the Mechanisms of Conifers Adaptation to Heavy Metal Action: 2. Functioning of Antioxidant Enzymes in Pine Seedlings Under Chronic Zinc Action. Russian Journal of Plant Physiology, 2012, vol. 59, pp. 50–58. https://doi.org/10.1134/S1021443712010098

Kaminska-Rozek E., Pukacki P.M. Effect of Water Deficit on Oxidative Stress and Degradation of Cell Membranes in Needles of Norway Spruce (Picea abies). Acta Physiologiae Plantarum, 2004, vol. 26, no. 4, pp. 431–442. https://doi.org/10.1007/s11738-004-0034-7

Kishchenko I.T. Dynamics of the Isoenzyme Composition of Peroxidase and Pigments in the Needles of the Introduced Species of Picea (L.) Karst. in the Taiga Zone (Karelia). Arctic Environmental Research, 2019, vol. 19, no. 4, pp. 129–138. https://doi.org/10.3897/issn2541-8416.2019.19.4.129

Klamerus-Iwan A., Blonska E. Canopy Storage Capacity and Wettability of Leaves and Needles: The Effect of Water Temperature Changes. Journal of Hydrology, 2018, vol. 559, pp. 534–540. https://doi.org/10.1016/j.jhydrol.2018.02.032

Mulrherjee S.P., Choudhuri M.A. Implication of Hydrogen Peroxide – Ascorbate System on Membrane Permeability of Water Stressed Vigna Seedlings. The New Phytologist, 1985, vol. 99, no. 3, pp. 355–360. https://doi.org/10.1111/j.1469-8137.1985.tb03663.x

Pradedova E.V., Isheeva O.D., Salyaev R.K. Classification of the Antioxidant Defense System as the Ground for Reasonable Organization of Experimental Studies of the Oxidative Stress in Plants. Russian Journal of Plant Physiology, 2011, vol. 58. pp. 210–217. https://doi.org/10.1134/S1021443711020166

Pukacka S., Pukacki P.M. Seasonal Changes in Antioxidant Level of Scots Pine (Pinus sylvestris L.) Needles Exposed to Industrial Pollution. I. Ascorbate and Thiol Content. Acta Physiologiae Plantarum, 2000, vol. 22, no. 4, pp. 451–456. https://doi.org/10.1007/s11738-000-0088-0

Pukacka S., Pukacki P.M. Seasonal Changes in Antioxidant Level of Scots Pine (Pinus sylvestris L.) Needles Exposed to Industrial Pollution. II. Enzymatic Scavengers Activities. Acta Physiologiae Plantarum, 2000, vol. 22, no. 4, pp. 457–464. https://doi.org/10.1007/s11738-000-0089-z

Roitto M.U., Ahonen-Jonnarth U., Lamppu J., Huttunen S. Apoplastic and Total Peroxidase Activities in Scots Pine Needles at Subarctic Polluted Sites. Forest Pathology, 1999, vol. 29, no. 6, pp. 399–410. https://doi.org/10.1046/j.1439-0329.1999.00175.x

Romanova I.M., Zhivetyev М.А., Penzina Т.А., Graskova I.А. Dynamics of Pinus sylvestris L. Needles Activity in Predbaikal’ye Forests. Journal of Stress Physiology and Biochemistry, 2013, vol. 9, no. 4, pp. 139–144.

Sancho-Knapik D., Sanz M.Á., Peguero-Pina J.J., Niinemets Ü., Gil-Pelegrín E. Changes of Secondary Metabolites in Pinus sylvestris L. Needles Under Increasing Soil Water Deficit. Annals of Forest Science, 2017, vol. 74, no. 1. https://doi.org/10.1007/s13595-017-0620-7

Shavnin S.A., Yusupov I.A., Marina N.V., Montile A.A., Golikov D.Yu. Seasonal Changes in Chlorophyll and Carotenoid Content in Needles of Scots Pines (Pinus sylvestris L.) Exposed to the Thermal Field of a Gas Flare. Russian Journal of Plant Physiology: A Comprehensive Russian Journal on Modern Phytophysiology, 2021, vol. 68, no. 3, pp. 526–535. https://doi.org/10.1134/S1021443721020187

Solovchenko A.E., Merzlyak M.N. Screening of Visible and UV Radiation as a Photoprotective Mechanism in Plants. Russian Journal of Plant Physiology, 2008, vol. 55. pp. 719–737. https://doi.org/10.1134/S1021443708060010

Sutinen M., Repo T., Sutinen S., Lasarov H., Alvila L., Pakkanen T. Physiological Changes in Pinus sylvestris Needles During Early Spring Under Sub-Arctic Conditions. Forest Ecology and Management, 2000, vol. 135, no. 1–3, pp. 217–228. https://doi.org/10.1016/S0378-1127(00)00312-1

Tarkhanov S.N., Pinaevskaya E.A., Aganina Y.E. Adaptive Responses of Morphological Forms of the Pine (Pinus sylvestris L.) Under Stressful Conditions of the Northern Taiga (in the Northern Dvina Basin). Contemporary Problems of Ecology, 2018, vol. 11, pp. 377–387. https://doi.org/10.1134/S1995425518040091

Turunen M., Latola K. UV-B Radiation and Acclimation in Timberline Plants. Environmental Pollution (Barking, Essex: 1987), 2005, vol. 137, no. 3, pp. 390–403. https://doi.org/10.1016/j.envpol.2005.01.030

Willekens H., Inze D., Van Montagu M., Van Camp W. Catalases in Plants. Molecular Breeding: New Strategies in Plant Improvement, 1995, vol. 1, no. 3, pp. 207–228. https://doi.org/10.1007/BF02277422

Yatsko Y.N., Dymova O.V., Golovko T.K. Violaxanthin Cycle Pigment Deep Oxidation and Thermal Dissipation of Light Energy in Three Boreal Species of Evergreen Conifer Plants. Russian Journal of Plant Physiology, 2011, vol. 58, pp. 169–173. https://doi.org/10.1134/S1021443711010249

Published

2023-04-21

How to Cite

Shavnin С., Yusupov И., Montile А., Golikov Д., and Marina Н. “Seasonal Dynamics of Content of Antioxidant System Component in Needles of Scots Pine (Pinus Sylvestris L.) Trees Situated in the Local Warming Impact Zone”. Lesnoy Zhurnal (Forestry Journal), no. 2, Apr. 2023, pp. 38-57, doi:10.37482/0536-1036-2023-2-38-57.

Similar Articles

You may also start an advanced similarity search for this article.