Spatial Distribution of Pine Forests in the Caucasus

Authors

DOI:

https://doi.org/10.37482/0536-1036-2025-2-92-111

Keywords:

Pinus sylvestris, distribution modelling, BAM concept, Maxent, spatial scale, the Caucasus

Abstract

An effective approach to studying the factors of distribution of forest-forming species of the Caucasus in conditions of orographic inaccessibility of mountainous areas is a combination of the use of geoinformation systems and the theory of ecological niche in SDM distribution models. Many aspects of this approach remain controversial, including the choice of ecological predictors, the collinearity of variables, the scale effect of the study area, the formalization of biotic factors and the dispersal capacity of species in models. The aim of this study has been to identify patterns of spatial distribution of pine (Pinus sylvestris L.) forests of the Caucasus depending on the area of the analyzed territory. To formalize the biotic factor of pine forest distribution, a method has been proposed for including probability distribution maps of the detection of competing species (birch (Betula pendula Roth and B. litwinowii Doluch.) forests) in the SDM model of P. sylvestris as biotic layers. The factor of pine dispersal capacity (accessibility of territories) has been formalized through the distance from the optimal habitats of the species (areas with a sustainability threshold of 0.8), where the probability of its detection remains above 0.5. A comparative analysis of different sets of abiotic predictors with and without multicollinear variables have revealed the advantages of the model based on the ENVIREM (Environmental Rasters for Ecological Modeling) dataset limited by the VIF (Variance Inflation Factor) test. At the local level (Central Caucasus), the main predictor of the location of pine forests is the accessibility of territories of 0–3 km from optimal habitats (the contribution to the model is about 72 %). At the regional level (Caucasus as a whole), interspecific competition is of great importance (the contribution to the model is about 37 %). The least significant factors in the distribution of pine forests are the main abiotic factors (orography of the area and the temperature and water regime of the driest quarter), the equity particlpation of which in the final models does not exceed 16 %. The species has been found to have a potentially wide distribution in the Caucasus in areas with diverse climatic and orographic conditions (about 21 thousand km2). The centre of the Caucasian pine range is predicted to be in the Central Caucasus (96 % of the optimal habitat area).

Downloads

Download data is not yet available.

Author Biographies

Rustam Kh. Pshegusov, Tembotov Institute of Ecology of Mountain Territories of the Russian Academy of Sciences

Doctor of Biology, Head of Laboratory; ResearcherID: I-8766-2012

Victoria A. Chadaeva, Tembotov Institute of Ecology of Mountain Territories of the Russian Academy of Sciences

Doctor of Biology, Head of Laboratory; ResearcherID: AAF-3095-2019

References

Акатов В.В., Акатов П.В., Майоров С.В. Тенденции изменения высотного ареала пихты нордмана на Западном Кавказе (бассейн р. Белая) // Изв. Рос. акад. наук. Сер.: Географич. 2013. No 2. С. 104–114. Akatov V.V., Akatov P.V., Majorov S.V. Trends in Altitude Area of Nordmann Fir in the Western Caucasus (Basin of Belaya River) in the Relation with the Global Warming Issue. Izvestiya Rossiiskoi Akademii Nauk. Seriya: Geograficheskaya, 2013, no. 2, pp. 104–114. (In Russ.).

Бебия С.М. Лесные ресурсы Черноморского побережья Кавказа: проблемы и перспективы их рационального использования // Сиб. лесн. журн. 2015. No 1. С. 9–24. Bebia S.M. Forest Resources of the Caucasian Black Sea Coast: Problems and Prospects of Rational Use. Sibirskij lesnoj zhurnal = Siberian Journal of Forest Science, 2015, no. 1, pp. 9–24. (In Russ.).

Галушко А.И. Основные рефугиумы и реликты в высокогорной флоре западной части Центрального Кавказа // Проблемы ботаники. Растительный мир высокогорий и его освоение. Л.: Наука, 1974. Т. 12. С. 19–26. Galushko A.I. Main Refugia and Relics in the Highland Flora of the Western Part of the Central Caucasus. Problems of Botany. Highland Flora and Its Development. Leningrad, Nauka Publ., 1974, vol. 12, pp. 19–26. (In Russ.).

Горнов А.В., Горнова М.В., Тихонова Е.В., Шевченко Н.Е., Кузнецова А.И., Ручинская Е.В., Тебенькова Д.Н. Оценка сукцессионного статуса хвойно-широколиственных лесов европейской части России на основе популяционного подхода // Лесоведение. 2018. No 4. С. 243–257. Gornov A.V., Gornova M.V., Tikhonova E.V., Shevchenko N.E., Kuznetsova A.I., Ruchinskaya E.V., Tebenkova D.N. Population-Based Assessment of Succession Stage of Mixed Forests in European Part of Russia. Lesovedenie = Russian Journal of Forest Science, 2018, no. 4, pp. 243–257. (In Russ.). https://doi.org/10.1134/S0024114818040083

Ермаков Н.Б., Абдурахманова З.И., Потапенко И.Л. К проблеме синтаксономии сосновых лесов (Pinus sylvestris var. hamata) с участием бореальных флористических элементов в Дагестане (Северный Кавказ) // Turczaninowia. 2019. Т. 22, No 4. С. 154–171. Ermakov N.B., Abdurakhmanova Z.I., Potapenko I.L. To the Problem of Syntaxonomy of Pine Forests (Pinus sylvestris var. hamata) with the Participation of Boreal Floristic Elements in Dagestan (North Caucasus). Turczaninowia, 2019, vol. 22, no. 4, pp. 154–171. (In Russ.). https://doi.org/10.14258/turczaninowia.22.4.16

Жучкова В.К., Раковская Э.М. Методы комплексных физико-географических исследований. М.: Академия, 2004. 368 с. Zhuchkova V.K., Rakovskaya E.M. Methods of Complex Physical and Geographical Research. Moscow, Akademiya Publ., 2004. 368 p. (In Russ.).

Комарова А.Ф., Куксина Н.В., Зудкин А.Г. Картографирование темнохвойных лесов Северо-Западного Кавказа методом нейронных сетей // Соврем. проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13, No 5. С. 157–166. Komarova A.F., Kuksina N.V., Zudkin A.G. Mapping of the North-West Caucasus Dark-Coniferous Forests with Neural Network Approach. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, vol. 13, no. 5, pp. 157–166. (In Russ.). https://doi.org/10.21046/2070-7401-2016-13-5-157-166

Мильков Ф.Н. Физическая география СССР. Общий обзор. Европейская часть СССР. Кавказ. М.: Мысль, 1976. 448 с. Milkov F.N. Physical Geography of the USSR. General Overview. European Part of the USSR. The Caucasus. Moscow, Mysl’ Publ., 1976. 448 p. (In Russ.).

Петрова И.В., Санников С.Н., Темботова Ф.А., Санникова Н.С., Фарзалиев В.С., Моллаева М.З., Егоров Е.В. Геногеография популяций Pinus sylvestris L. Большого Кавказа и Крыма // Экология. 2017. No 6. С. 431–439. Petrova I.V., Sannikov S.N., Tembotova F.A., Sannikova N.S., Farzaliev V.S., Mollaeva M.Z., Egorov E.V. Genogeography of Populations of Pinus sylvestris L. of the Greater Caucasus and Crimea. Ekologiya = Russian Journal of Ecology, 2017, no. 6, pp. 431–439. (In Russ.). https://doi.org/10.7868/S036705971706004X

Пукинская М.Ю., Кессель Д.С., Щукина К.В. Усыхание пихто-ельников Тебердинского заповедника // Ботан. журн. 2019. Т. 104, No 3. С. 337–362. Pukinskaya M.Yu., Kessel D.S., Shchukina K.V. Drying of Fir-Spruce Forests of the Teberda Nature Reserve. Botanicheskij zhurnal, 2019, vol. 104, no. 3, pp. 337–362. (In Russ.). https://doi.org/10.1134/S0006813619030062

Рахматуллина И.Р., Рахматуллин З.З., Латыпов Е.Р. Моделирование условий произрастания и анализ вклада факторов в формирование высокобонитетных насаждений сосны (Pinus sylvestris L.) в программе Maxent (на примере Бугульминско-Белебеевской возвышенности в пределах Республики Башкортостан) // Природообустройство. 2017. No 3. С. 104–111. Rakhmatullina I.R., Rakhmatullin Z.Z., Latypov E.R. Simulation of Growing Conditions and Analysis of Factors Contribution in Formation of High Bonitet Plantings of Pine (Pinus sylvestris L.) in the Program Maxent (by the Example of the Bugulminsko-Belebeevsky Upland within the Republic of Bashkortostan. Prirodoobustrojstvo, 2017, no. 3, pp. 104–111. (In Russ.).

Темботова Ф.А., Пшегусов Р.Х., Тлупова Ю.М., Темботов Р.Х., Ахомготов А.З. Состояние лесных экосистем горных территорий Кабардино-Балкарии по данным дистанционного зондирования // Изв. Рос. акад. наук. Сер.: Географич. 2012. No 6. С. 89–97. Tembotova F.A., Pshegusov R.Kh., Tlupova Yu.M., Tembotov R.Kh., Akhomgotov A.Z. The Data on Remote Sensing and Possibility of Their Use to Evaluate the Performance of Forest Ecosystems in Mountain Territories (a Case Study of the Kabardino-Balkar Republic). Izvestiya Rossiiskoi Akademii Nauk. Seriya: Geograficheskaya, 2012, no. 6, pp. 89–97. (In Russ.).

Тумаджанов И.И. История лесов Северного Кавказа в голоцене // Вопросы голоцена. Вильнюс, 1961. С. 249–266. Tumadzhanov I.I. History of the North Caucasus Forests in the Holocene. Voprosy golotsena. Vilnius, 1961, pp. 249–266. (In Russ.).

Adhikari D., Singh P.P,, Tiwary R., Barik S., Barik S.K. Modelling the Environmental Niche and Potential Distribution of Magnolia campbellii Hook. f. & Thomson for its Conservation in the Indian Eastern Himalaya. Plants of Commercial Values. India, New Delhi, New India Publ. Agency, 2019, pp. 79–88.

Akaike H. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 1974, vol. 19, iss. 6, pp. 716–723. https://doi.org/10.1109/TAC.1974.1100705

Akobia I., Janiashvili Z., Metreveli V., Zazanashvili N., Batsatsashvili K., Ugrekhelidze K. Modelling the Potential Distribution of Subalpine Birches (Betula spp.) in the Caucasus. Community Ecology, 2022, vol. 23, pp. 209–218. https://doi.org/10.1007/s42974-022-00097-4

Araújo M.B., Peterson A.T. Uses and Misuses of Bioclimatic Envelope Modeling. Ecology, 2012, vol. 93, iss. 7, pp. 1527–1539. https://doi.org/10.1890/11-1930.1

Baldwin R.A. Use of Maximum Entropy Modeling in Wildlife Research. Entropy, 2009, vol. 11, no. 4, pp. 854–866. https://doi.org/10.3390/e11040854

Boyce M.S., Vernier P.R., Nielsen S.E., Schmiegelow F.K.A. Evaluating Resource Selection Functions. Ecological Modelling, 2002, vol. 157, iss. 2–3, pp. 281–300. https://doi.org/10.1016/S0304-3800 (02)00200-4

Buchner J., Yin H., Frantz D., Kuemmerle T., Askerov E., Bakuradze T., Bleyhl B., Elizbarashvili N., Komarova A., Lewińska K.E., Rizayeva A., Sayadyan H., Tan B,, Tepanosyan G., Zazanashvili N., Radeloff V.C. Land-Cover Change in the Caucasus Mountains Since 1987 Based on the Topographic Correction of Multi-Temporal Landsat Composites. Remote Sensing of Environment, 2020, vol. 248, art. no. 111967. https://doi.org/10.1016/j.rse.2020.111967

Çoban S. Spatial Stand Structure Analysis of Uludağ Fir Forests in the Northwest of Turkey. Applied Ecology and Environmental Research, 2020, vol. 18 (5), pp. 7353–7367. https://doi.org/10.15666/aeer/1805_73537367

Daget Ph., Ahdali L., David P. Mediterranean Bioclimate and its Variation in the Palaearctic Region. Mediterranean-Type Ecosystems. Tasks for Vegetation Science. Dordrecht, Springer, 1988, vol. 19, pp. 139–148. https://doi.org/10.1007/978-94-009-3099-5_6

De Marco P.J., Nóbrega C.C. Evaluating Collinearity Effects on Species Distribution Models: An Approach Based on Virtual Species Simulation. PLoS ONE, 2018, vol. 13 (9), art. no. e0202403. https://doi.org/10.1371/journal.pone.0202403

Elith J., Franklin J. Species Distribution Modeling. Encyclopedia of Biodiversity (Second Edition). Oxford, Academic Press, 2013, pp. 692–705. https://doi.org/10.1016/B978-0-12-384719-5.00318-X

ENVIREM. Environmental Rasters for Ecological Modeling, 2023. Available at: https://envirem.github.io/ (accessed 15.03.23).

GBIF. Global Biodiversity Information Facility, 2023. Available at: https://www.gbif.org/ (accessed 5.04.23).

Gokturk A., Tıraş H. Stand Structure and Spatial Distribution of Trees at Different Developmental Stages and Stand Layers in Mixed Stands in Artvin Region, Turkey. Applied Ecology and Environmental Research, 2020, vol. 18 (5), pp. 6163–6179. https://doi.org/10.15666/aeer/1805_61636179

Hijmans R.J., Phillips S.J., Leathwick J., Elith J. Dismo: Species Distribution Modeling: R Package Version 1.3-3, 2017. Available at: https://CRAN.R-project.org/package=dismo (accessed 5.04.23).

Komarova A. Mapping of Caucasian Fir Forests (Abies nordmanniana (Stev.) Spach). Proceedings of the 12 International SCGIS Conference. USA, California, Monterey, 2013. https://doi.org/10.13140/RG.2.1.1761.8004

Păltineanu Cr., Mihălescu I.F., Seceleanu I., Dragotă C.S., Vasenciuc F. Ariditatea, Seceta, Evapotranspiraţia si Cerinţele de Apă Ale Culturilor Agricole in Romania. Constanţa, Editura Ovidius University Press, 2007. 319 р. (In Rom.).

Pearson R.G., Dawson T.P., Liu C. Modelling Species Distributions in Britain: a Hierarchical Integration of Climate and Land-Cover Data. Ecography, 2004, vol. 27 (3), pp. 285–298. https://doi.org/10.1111/j.0906-7590.2004.03740.x

Peterson A.T. Uses and Requirements of Ecological Niche Models and Related Distributional Models. Biodiversity Informatics, 2006, vol. 3, pp. 59–72. https://doi.org/10.17161/bi.v3i0.29

Peterson A.T., Soberón J. Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Natureza & Conservação, 2012, vol. 10 (2), pp. 102–107. https://doi.org/10.4322/natcon.2012.019

Phillips S.J., Dudík M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography, 2008, vol. 31, iss. 2, pp. 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

Pshegusov R., Tembotova F., Chadaeva V., Sablirova Y., Mollaeva M., Akhomgotov A. Ecological Niche Modeling of the Main Forest-Forming Species in the Caucasus. Forest Ecosystems, 2022, vol. 9, art. no. 100019. https://doi.org/10.1016/j.fecs.2022.100019

Riley Sh.J., DeGloria S.D., Elliot R. A Terrain Ruggedness Index That Quantifies Topographic Heterogeneity. International Journal of Sciences, 1999, vol. 5, no. 1–4, pp. 23–27.

Shevchenko N.E., Geraskina A.P. Northwest Caucasus Forest Spreading Evaluation by GIS Modeling and Historical and Geographic Data Analysis. Ecological Questions, 2019, vol. 30, no. 2, pp. 47–55. https://doi.org/10.12775/EQ.2019.011

Sillero N., Barbosa A.M. Common Mistakes in Ecological Niche Models. International Journal of Geographical Information Science, 2021, vol. 35, iss. 2, pp. 213–226. https://doi.org/10.1080/13658816.2020.1798968

SRTM 90m DEM Digital Elevation Database, 2022. Available at: https://srtm.csi.cgiar.org/ (accessed 10.04.23).

Title P.O., Bemmels J.B. ENVIREM: An Expanded Set of Bioclimatic and Topographic Variables Increases Flexibility and Improves Performance of Ecological Niche Modeling. Ecography, 2018, vol. 41, iss. 2, pp. 291–307. https://doi.org/10.1101/075200

Usta A., Yılmaz M. Relationships Between Environmental Variables and the Distributions of Tree Species on the Karadağ Mass in Transition Zone of Sites, NE Turkey. Eurasian Journal of Forest Science, 2020, vol. 8, pp. 11–24. https://doi.org/10.31195/ejejfs.583261

WorldClim2. WorldClim Climate Database, 2023. Available at: https://worldclim.com/version2 (accessed 10.04.23).

Published

2025-04-14

How to Cite

Pshegusov Р., and Chadaeva В. “Spatial Distribution of Pine Forests in the Caucasus”. Lesnoy Zhurnal (Forestry Journal), no. 2, Apr. 2025, pp. 92-111, doi:10.37482/0536-1036-2025-2-92-111.