Effective Positioning in Cutting Area of a Harvester Using Computer Modelling

Authors

DOI:

https://doi.org/10.37482/0536-1036-2023-4-120-135

Keywords:

working stand, harvesting, computer modelling, time of cyclic processing, random variable, productivity of a machine

Abstract

An improvement of methods and models for preliminary estimation of the performance of harvesters in timber production intends to support better justification of the use of certain harvester types and technologies for specific natural and production conditions. It is possible to increase the accuracy of calculation models with a more complete and realistic description of the production environment and operational processes. The article presents a modelling of the harvester’s movements across cutting areas for selecting a position with the highest number of accessible trees. The investigational process involved the creation of an algorithm along with a simulation model and the statistical processing of the results. The problem-solving process required consideration of the tree’s distribution within the cutting region. The data arrays, which were necessary for efficiency evaluation in the simulation model and its software implementation, were the following: the distance between the working stands of the machine with the maximum number of available trees, the time of cyclic processing, and the number of trees in the area. The results of the statistical analysis of the data are presented with justification from the theoretical laws of probability distribution. The choice of machine working stands, which considered the arrangement of the trees, was estimated using the productivity per hour index. The index was calculated with a constant distance parameter that is equal to the difference between the maximum and the minimum manipulator’s movement, and it was also calculated for a stand with a maximum number of accessible trees. The calculation function for the index involves random variables that characterize the working conditions of the stand. The index itself is conceded as a random variable. The values for it were found by statistical data processing. A comparison of the values determined a high probability of a significant increase in the productivity of the harvester. At the stand with the maximum number of trees, it is estimated at around 8 % with a standard deviation of 0.199.
For citation: Makarenko A.V. Effective Positioning in Cutting Area of a Harvester Using Computer Modelling. Lesnoy Zhurnal = Russian Forestry Journal, 2023, no. 4, pp. 120–135. (In Russ.). https://doi.org/10.37482/0536-1036-2023-4-120-135

Downloads

Download data is not yet available.

Author Biography

Andrey V. Makarenko, Mytishchi Branch of Bauman Moscow State Technical University

Candidate of Engineering, Assoc. Prof.; ResearcherID: GON-8614-2022

References

Азарёнок В.А. Экологизированные рубки спелых и перестойных насаждений в реализации концепции сохранения лесорастительной среды (на примере Свердловской области): автореф. дис. … д-ра с.-х. наук. Екатеринбург, 2012. 40 с. Azarenok V.A. Ecologically Harvesting of Mature and Overmature Stands in the Implementation of the Concept of Conservation of Forest Ecosystems (A Case Study of Sverdlovsk Region): Doc. Agric. Sci. Diss. Abs. Yekaterinburg, 2012. 40 p. (In Russ.).

Барановский В.А., Некрасов Р.М. Системы машин для лесозаготовок. М.: Лесн. пром-сть, 1977. 248 с. Baranovskiy V.A., Nekrasov R.M. Machine Systems for Logging. Moscow, Lesnaya promyshlennost’ Publ., 1977. 248 p. (In Russ.).

Герц Э.Ф. Оценка технологии лесопользования на лесосечных работах. Екатеринбург: УГЛТУ, 2003. 120 с. Gerts E.F. Assessment of Forest Management Technology on Logging Operations. Yekaterinburg, USFEU Publ., 2003. 120 p. (In Russ.).

Григорьев И.В., Редькин А.К., Валяжёнков В.Д., Матросов А.В. Технология и оборудование лесопромышленных производств. Технология и машины лесосечных работ. СПб.: СПбГЛТА, 2010. 331 с. Grigoryev I.V., Redkin A.K., Valyazhenkov V.D., Matrosov A.V. Technology and Equipment of Timber Industries. Technology and Machines of Logging Operations. Saint Petersburg, SPbGLTA Publ., 2010. 331 p. (In Russ.).

Грушин М.А. Распознавание крон деревьев на снимках высокого разрешения // Вестн. МГУЛ – Лесн. вестн. 2012. № 6. С. 149–154. Grushin M.A. Tree Crown Recognition on High Resolution Images. Lesnoy vestnik = Forest Bulletin, 2012, no. 6, pp. 149–154. (In Russ.).

Захаров В. Системы интеллектуального управления лесных машин // ЛесПромИнформ. 2015. № 6(112). С. 72–78. Zakharov V. Intelligent Control Systems for Forest Machines. LesPromInform, 2015, vol. 6, no. 112, pp. 72–78. (In Russ.).

Ильчуков С.В. Динамика горизонтальной структуры производных лиственных насаждений // Изв. вузов. Лесн. журн. 2003. № 6. С. 29–34. Ilchukov S.V. Dynamics of the Horizontal Structure of Derived Deciduous Plantings. Lesnoy Zhurnal = Russian Forestry Journal, 2003, no. 6, pp. 29–34. (In Russ.). http://lesnoizhurnal.ru/upload/iblock/873/873db22985ff48dfbb622e8cb66934e8.pdf

Каляшов В.А. Обоснование рациональной технологии несплошных рубок при заготовке сортиментов многооперационными машинами: автореф. дис. … канд. техн. наук. СПб., 2004. 20 с. Kalyashov V.A. Substantiation of Rational Technology of Non-Continuous Logging when Harvesting Sortings by Multi-Operation Machines: Cand. Eng. Sci. Diss. Abs. Saint Petersburg, 2004. 20 p. (In Russ.).

Капустин В.А. Число деревьев, срезаемых с одной стоянки валочно-пакетирующей машиной // Изв. вузов. Лесн. журн. 1985. № 2. С. 32–36. Kapustin V.A. The Number of Trees Cuttings from one Stand by a Feller-Buncher. Lesnoy Zhurnal = Russian Forestry Journal, 1985, no. 2, pp. 32–36. (In Russ.). http://lesnoizhurnal.ru/upload/iblock/5ae/32_36.pdf

Макаренко А.В., Редькин А.К. Влияние технологических решений на условия и эффективность работы манипуляторных лесозаготовительных машин // Вестн. МГУЛ – Лесн. вестн. 2014. № 2-S. С. 7–11. Makarenko A.V., Redkin A.K. The Influence of Technological Solutions on the Conditions and Efficiency of Harvesters. Lesnoy vestnik = Forest Bulletin, 2014, no. 2-S, pp. 7–11. (In Russ.).

Матвейко А.П. Малоотходные и безотходные технологии в лесном хозяйстве и лесной промышленности. Минск: БГТУ, 1999. 84 с. Matveiko A.P. Low-Waste and Zero-Waste Technologies in Forestry and Timber Industry. Minsk, BSTU Publ., 1999. 84 p. (In Russ.).

Меньшиков В.Н. Основы технологии заготовки леса с сохранением и воспроизводством природной среды. Л.: Ленингр. ун-т, 1987. 220 с. Menshikov V.N. Fundamentals of Forest Harvesting Technology with Preservation and Reproduction of the Natural Environment. Leningrad, Leningrad State University Publ., 1987. 220 p. (In Russ.).

Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. Погружение в мир нейронных сетей. СПб.: Питер, 2019. 480 с. Nikolenko S., Kadurin A., Arkhangelskaya E. Deep Learning. Dipping into the World of Neural Networks. Saint Petersburg, Piter Publ., 2019. 480 p. (In Russ.).

Секретенко О.П., Грабарник П.Я. Анализ горизонтальной структуры древостоев методами случайных точечных полей // Сиб. лесн. журн. 2015. № 3. С. 32–44. Secretenko O.P., Grabarnik P.Ya. Analysis of Tree Stand Horizontal Structure Using Random Point Field Methods. Sibirskij Lesnoj Zurnal = Siberian Journal of Forest Science, 2015, no. 3. pp. 32–44. (In Russ.). https://doi.org/10.15372/SJFS20150304

Сухих В.И. Аэрокосмические методы в лесном хозяйстве и ландшафтном строительстве. Йошкар-Ола: МарГТУ, 2005. 392 с. Sukhikh V.I. Aerospace Methods in Forestry and Landscape Construction. Yoshkar-Ola, MarSTU Publ., 2005. 392 p. (In Russ.).

Шегельман И.Р., Будник П.В., Баклагин В.Н. Методика компьютерного эксперимента при определении грузоподъемности и размеров грузового отсека лесной транспортной машины // Изв. вузов. Лесн. журн. 2019. № 6. С. 160–173. Shegelman I.R., Budnik P.V., Baklagin V.N. Computer Experiment Technique for Determining the Load Capacity and Dimensions of the Carrying Compartment of a Forest Vehicle. Lesnoy Zhurnal = Russian Forestry Journal, 2019, no. 6, pp. 160–173. (In Russ.). https://doi.org/10.17238/issn0536-1036.2019.6.160

Ширнин Ю.А. Моделирование и разработка оптимальных технологических процессов лесосечных работ (для условий Волго-Вятского лесоэкономического района): автореф. дис. … д-ра техн. наук. М., 1993. 42 с. Shirnin Yu.A. Modelling and Development of Optimal Technological Processes of Logging Operations (for Conditions of Volgo-Vyatsky Forest-Economic Region): Dr. Eng. Sci. Diss. Abs. Moscow, 1993. 42 p. (In Russ.).

Ширнин Ю.А., Онучин Е.М. Имитационное моделирование движения многооперационной лесной машины // Изв. вузов. Лесн. журн. 2003. № 4. С. 66–72. Shirnin Yu.A., Onuchin E. M. Simulation of Movement of Multi-Function Logging Machine. Lesnoy Zhurnal = Russian Forestry Journal, 2003, no. 4, pp. 66–72. (In Russ.). http://lesnoizhurnal.ru/upload/iblock/a6c/a6c9e8eb8c696f395f0f44a8cf739672.pdf

Ackerman S.A., Talbot B., Astrup R. The Effect of Tree and Harvester Size on Productivity and Harvester Investment Decisions. International Journal of Forest Engineering, 2021, vol. 33, no. 1, pp. 22–32. https://doi.org/10.1080/14942119.2021.1981046

Bilici E. Investigation of Feller-Buncher Performance Using Weibull Distribution. Forests, 2021, vol. 12, iss. 3, pp. 284. https://doi.org/10.3390/f12030284

Liski E., Jounela P., Korpunen H., Sosa A., Lindroos O., Jylhä P. Modeling the Productivity of Mechanized CTL Harvesting with Statistical Machine Learning Methods. International Journal of Forest Engineering, 2020, vol. 31, iss. 3, pp. 253–262. https://doi.org/10.1080/14942119.2020.1820750

Makarenko A.V., Redkin A.K., Bykovsky M.A., Shadrin A.A. Using Space Images of Forest Territories for Their Statistical Analysis. Proceedings of the AIP Conference Dedicated to the Memory of Academician S.P. Korolev and Other Outstanding Russian Scientists – Pioneers of Space Exploration. AIP Publishing Publ., 2019, vol. 2171, iss. 1, pp. 158–169. https://doi.org/10.1063/1.5133252

Miyajima R.H., Fenner P.T., Batistela G.C., Simões D. Technical-Economic Analysis of Grapple Saw: A Stochastic Approach. Croatian Journal of Forest Engineering, 2020, vol. 41, iss. 2, pp. 219–229. https://doi.org/10.5552/crojfe.2020.681

Noordermeer L., Sørngård E., Astrup R., Næsset E., Gobakken T. Coupling a Differential Global Navigation Satellite System to a Cut-To-Length Harvester Operating System Enables Precise Positioning of Harvested Trees. International Journal of Forest Engineering, 2021, vol. 32, no. 2, pp. 119–127. https://doi.org/10.1080/14942119.2021.1899686

Wang J., LeDoux C.B., Li Y. Simulating Cut-to-Length Harvesting Operations in Appalachian Hardwoods. International Journal of Forest Engineering, 2005, vol. 16, no. 2, pp. 11–27. https://doi.org/10.1080/14942119.2005.10702510

Published

2023-08-02

How to Cite

Makarenko А. “Effective Positioning in Cutting Area of a Harvester Using Computer Modelling”. Lesnoy Zhurnal (Forestry Journal), no. 4, Aug. 2023, pp. 120-35, doi:10.37482/0536-1036-2023-4-120-135.