Sorption and Structural Properties of Aerogel Materials Based on Biopolymers

Authors

DOI:

https://doi.org/10.37482/0536-1036-2023-6-190-203

Keywords:

biopolymers, lignosulfonate, alginate, chitosan, aerogel materials, metals, dyes, sorption

Abstract

Nowadays aerogel materials (AM) are successfully used as entero- and applicative sorbents to eliminate excessive amounts of heavy metals and toxins from living organisms. Natural biopolymers alginate and chitosan, as well as various lignin derivatives are an inexhaustible raw material base for the creation of AM. A significant number of sorption materials and wound coatings of various types have been developed on their basis, which is associated not only with a wide range of physicochemical properties of these polymers and their already proven biomedical activity, but also with the prevalence and renewability of raw material sources for the production of these polymers, ease of extraction, the possibility of achieving a high degree of purification and relatively low price. The key stage in the AM synthesis is the formation of a strong hydrogel which is the AM framework. One of the technological methods is to obtain interpolyelectrolyte solid hydrogel. The paper proposes two different packaging models for the formation of the structure of interpolyelectrolyte complexes (IPEC) based on biopolymers pairs: sodium alginate (ALNa)–chitosan (CT) and sodium lignosulfonate (LSNa)–CT. The first model is a block model, in which the structure is formed due to ionic bonds between the carboxyl groups of ALNa and amino groups of CT, as well as a cooperative system of hydrogen bonds and dispersion interactions. The second model is an aggregation-tubular model, the structure of which is formed through ionic bonds between sulfogroups (within the rod-shaped supramolecular structures of LSNa) and amino groups of CT, as well as hydrogen bonds and dispersion interactions. Upon the process of IPEC drying under supercritical (SC-) conditions, strong phase contacts are formed, and the changes in the gel structure become irreversible. As a result, hydrophobic micro- and mesoporous two-component AMs differing in internal structure were obtained. AM ALNa–CT are characterized by fibrillar structure, and LSNa–CT – by structural elements of spherical shape. The obtained AM ALNa–CT and LSNa–CT have high sorption activity towards water and a wide range of heavy metals and low molecular weight toxins. The purpose of the work is to study the structural and sorption properties of AM based on biopolymers of various structural organization. A significant increase in the sorption activity of AM ALNa–CT in comparison with LSNa–CT is apparently due to their different supramolecular structure. There is a combination of several sorption mechanisms such as wetting, absorption, diffusion, osmotic phenomena and chemical interaction due to the highly porous structure of AM and the presence of sorption-active centers.
For citation: Brovko O.S., Palamarchuk I.A., Gorshkova N.A., Bogdanovich N.I., Ivakhnov A.D. Sorption and Structural Properties of Aerogel Materials Based on Biopolymers. Lesnoy Zhurnal = Russian Forestry Journal, 2023, no. 6, pp. 190–203. (In Russ.). https://doi.org/10.37482/0536-1036-2023-6-190-203

Downloads

Download data is not yet available.

Author Biographies

Olga S. Brovko, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Candidate of Chemistry, Leading Research Scientist, Assoc. Prof.; ResearcherID: AAF-5387-2019

Irina A. Palamarchuk, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Candidate of Chemistry, Senior Research Scientist; ResearcherID: AAF-5454-2019

Natalia A. Gorshkova, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Candidate of Chemistry, Senior Research Scientist; ResearcherID: AAF-5411-2019

Nikolay I. Bogdanovich, Northern (Arctic) Federal University named after M.V. Lomonosov

Doctor of Engineering, Prof.; ResearcherID: A-4662-2013

Artem D. Ivakhnov, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences; Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Chemistry, Senior Research Scientist; ResearcherID: U-4822-2019

References

Бузинова Д.А., Шиповская А.Б. Cорбционные и бактерицидные свойства пленок хитозана // Изв. Сарат. ун-та. Нов. сер. Сер.: Химия. Биология. Экология. 2008. Т. 8, № 2. С. 42–46. Buzinova D.A., Shipovskaya A.B. Sorption and Bactericidal Properties of Chitosan Films. Izvestiya Saratovskogo universiteta = Bulletin of the Saratov University, 2008, vol. 8, Ser. Chemistry. Biology. Ecology, no. 2, рp. 42–46. (In Russ.).

Вальчук Н.А., Бровко О.С., Паламарчук И.А., Бойцова Т.А., Боголицын К.Г., Ивахнов А.Д., Чухчин Д.Г., Богданович Н.И. Получение материалов аэрогельного типа на основе интерполимерного комплекса альгинат-хитозан с использованием сверхкритических флюидов // Сверхкрит. флюиды: теор. и практ. 2018. Т. 13, № 3. С. 83–89. Valchuk N.A., Brovko O.S., Palamarchuk I.A., Boitsova T.A., Bogolitsyn K.G., Ivakhnov A.D., Chukhchin D.G., Bogdanovich N.I. Preparation of Aerogel Materials Based on Alginate-Chitosan Interpolymer Complex Using Supercritical Fluids. Supercritical Fluids: Theory and Practice, 2018, vol. 13, no. 3, рp. 83–89. (In Russ.).

Вишнякова А.П., Бровко О.С. Применение ультрафильтрации для очистки, концентрирования и фракционирования лигносульфонатов сульфитного щелока // Экология и пром-сть России. 2009. № 8. С. 37–39. Vishnyakova A.P., Brovko O.S. Application of Ultrafiltration for Clearing, Concentration and Fractionating of Lignosulphonates of Sulfite Lye. Ekologia i promyshlennost Rossii = Ecology and Industry of Russia, 2009, no. 8, рp. 37–39. (In Russ.).

Горшкова Н.А., Бровко О.С., Паламарчук И.А., Ивахнов А.Д., Боголицын К.Г., Богданович Н.И., Чухчин Д.Г. Формирование надмолекулярной структуры композиционного аэрогеля на основе альгината натрия и хитозана // Сверхкрит. флюиды: теор. и практ. 2020. Т. 15, № 3. С. 11–20. Gorshkova N.A., Brovko O.S., Palamarchuk I.A., Ivakhnov A.D., Bogolitsyn K.G., Bogdanovich N.I., Chukhchin D.G. Formation of a Supramolecular Structure of a Composite Aerogel Based on Sodium Alginate and Chitosan. Supercritical Fluids: Theory and Practice, 2020, vol. 15, no. 3, pp. 11–20. (In Russ.).

Изумрудов В.А. Явления самосборки и молекулярного «узнавания» в растворах (био)полиэлектролитных комплексов // Успехи химии. 2008. Т. 77, № 4. С. 401–415. Izumrudov V.A. Self-assembly and Molecular “Recognition” Phenomena in Solutions of (Bio)Polyelectrolyte Complexes. Uspekhi himii = Russian Chemical Reviews, 2008, vol. 77, no. 4, pp. 401–415. (In Russ.). https://doi.org/10.1070/RC2008v077n04ABEH003767

Кабанов В.А. Полиэлектролитные комплексы в растворе и в конденсированной фазе // Успехи химии. 2005. Т. 74, № 1. С. 5–23. Kabanov V.A. Polyelectrolyte Complexes in Solution and in Bulk. Uspekhi himii = Russian Chemical Reviews, 2005, vol. 74, no. 1, pp. 5–23. (In Russ.). https://doi.org/10.1070/RC2005v074n01ABEH001165

Конорев М.Р. Клиническая фармакология энтеросорбентов нового поколения // Вестн. фармации. 2013. № 4(62). С. 79–85. Konorev M.R. Clinical Pharmacology of New Generation Enterosorbents. Vestnik farmacii = Bulletin of Pharmacy, 2013, vol. 4, no. 62, pp. 79–85. (In Russ.).

Леванова В.П. Лечебный лигнин. СПб.: Центр сорбц. технологий, 1992. 136 с. Levanova V.P. Therapeutic Lignin. Saint Petersburg, Center for Sorption Technologies Publ., 1992. 136 p. (In Russ.).

Морозов А.С., Бессонов И.В., Нуждина А.В., Писарев В.М. Сорбенты для экстракорпорального удаления токсических веществ и молекул с нежелательной биологической активностью (обзор) // Общ. реаниматология. 2016. Т. 12, № 6. С. 82–107. Morozov A.S., Bessonov I.V., Nuzhdina A.V., Pisarev V.M. Sorbents for Extracorporeal Removal of Toxic Substances and Molecules with Undesirable Biological Activity (Review). Obshchaya reanimatologiya = General Reanimatology, 2016, vol. 12, no. 6, рp. 82–107. (In Russ.). https://doi.org/10.15360/1813-9779-2016-6-82-107

Мухина О.Ю., Пискунова И.А., Лысенко А.А. Адсорбция красителя метиленового голубого активированными углеродными волокнами // Журн. приклад. химии. 2003. Т. 76, № 6. С. 926–930. Mukhina O.Yu., Piskunova I.A., Lysenko A.A. Sorption of Methylene Blue Dye by Activated Carbon Fibers. Zurnal prikladnoy khimii = Russian Journal of Applied Chemistry, 2003, vol. 76, no. 6, рр. 926–930. (In Russ.). https://doi.org/10.1023/A:1026311606910

Олтаржевская Н.Д., Коровина М.А., Кричевский Г.Е., Щедрина М.А., Егорова Е.А. Возможности применения полисахаридов при лечении ран // Раны и раневые инфекции. Журн. им. проф. Б.М. Костюченка. 2019. Т. 6, № 2. С. 24–31. Oltarzhevskaya N.D., Korovina M.A., Krichevsky G.E., Shchedrina M.A., Egorova E.A. Possibilities of Using Polysaccharides in the Treatment of Wounds. Rany i ranevye infekcii = Wounds and Wound Infections, 2019, vol. 6, no. 2, pp. 24–31. (In Russ.). https://doi.org/10.25199/2408-9613-2019-6-2-24-31

Паламарчук И.А., Макаревич Н.А., Бровко О.С., Бойцова Т.А. Афанасьев Н.И. Кооперативные взаимодействия в системе лигносульфонат-хитозан // Химия раст. сырья. 2008. № 4. С. 29–34. Palamarchuk I.A., Makarevich N.A., Brovko O.S., Boitsova T.A., Afanasiev N.I. Cooperative Interactions in the Lignosulfonate-Chitosan System. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Material, 2008, no. 4, pp. 29–34. (In Russ.).

Пршибил Р. Комплексоны в химическом анализе / под ред. Ю.Ю. Лурье. М.: Иностр. лит., 1960. 580 c. Prshibil R. Complexones in Chemical Analysis. Moscow, International Literature Publ., 1960. 580 p. (In Russ.).

Смирнов Б.М. Аэрогели // Успехи физ. наук. 1987. Т. 152, № 5. С. 133–157. Smirnov B.M. Aerogels. Uspekhi fizicheskikh nauk = Advances in the Physical Sciences, 1987, vol. 152, no. 5, pp. 133–157. (In Russ.). https://doi.org/10.3367/UFNr.0152.198705e.0133

Тунакова Ю.А., Мухаметшина Е.С., Шмакова Ю.А. Оценка сорбционной емкости биополимерных сорбентов на основе лигнина в отношении металлов // Вестн. Казан. технол. ун-та. 2011. № 9. С. 74–79. Tunakova Yu.A., Mukhametshina E.S., Shmakova Yu.A. Evaluation of the Sorption Capacity of Biopolymer Sorbents Based on Lignin in Relation to Metals. Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of the Kazan Technological University, 2011, no. 9, pp. 74–79. (In Russ.).

Швецов И.С. Аппликационные гемостатические средства. Возможности и перспективы альгината натрия и хитозана // Соврем. наука: актуал. проблемы теории и практики. Сер.: Естеств. и техн. науки. 2021. № 5. С. 230–235. Shvetsov I.S. Application Hemostatic Agents: Possibilities and Prospects of Sodium Alginate and Chitosan. Sovremennaya nauka: aktual’nye problemy teorii i praktiki. Seriya: Estestvennye i tekhnicheskie nauki = Modern Science: Actual Problems of Theory and Practice. Ser. Natural and Technical Sciences, 2021, no. 5, pp. 230–235. (In Russ.). https://doi.org/10.37882/2223-2966.2021.05.35

Ali F.M., Boviery M.A. Adsorption Characteristics of Wheat Bran Towards Heavy Metal Cations. Separation and Purification Technology, 2004, vol. 38, iss. 3, pp. 197–207. https://doi.org/10.1016/j.seppur.2003.11.005

Alzaydien A.S. Adsorption of Methylene Blue from Aqueous Solution onto a LowCost Natural Jordanian Tripoli. American Journal of Environmental Sciences, 2009, vol. 5, iss. 3, pp. 197–208. https://doi.org/10.3844/ajessp.2009.197.208

Brovkо O.S., Palamarchuk I.A., Boitsova T.A., Bogolitsyn K.G., Valchuk N.A., Chukhchin D.G. Influence of the Conformation of Biopolyelectrolytes on the Morphological Structure of Their Interpolymer Complexes. Macromolecular Research, 2015, vol. 23, iss. 11, pp. 1059–1067. https://doi.org/10.1007/s13233-015-3140-z

Gorshkova N., Brovko O., Palamarchuk I., Bogolitsyn K., Ivakhnov A. Preparation of Bioactive Aerogel Material Based on Sodium Alginate and Chitosan for Controlled Release of Levomycetin. Polymers for Advanced Technologies, 2021, vol. 32, iss. 9, pp. 3474–3482. https://doi.org/10.1002/pat.5358

Gorshkova N., Brovko O., Palamarchuk I., Bogolitsyn K., Bogdanovich N., Ivakhnov A., Chukhchin D., Arkhilin M. Formation of Supramolecular Structure in Alginate/ Chitosan Aerogel Materials during Sol-Gel Synthesis. Journal of Sol-Gel Science and Technology, 2020, vol. 95, iss. 1, pp. 101–108. https://doi.org/10.1007/s10971-020-05309-9

Murata Y., Kodama Y., Hirai D., Kofuji K., Kawashima S. Properties of an Oral Preparation Containing a Chitosan Salt. Molecules, 2009, vol. 14, no. 2, pp. 755–762. https://doi.org/10.3390/molecules14020755

Murata Y., Kudo S., Kofuji K., Miyamoto E., Kawashima S. Adsorption of Bile Acid by Chitosan-Orotic Acid Salt, and Its Application as an Oral Preparation. Chemical and Pharmaceutical Bulletin, 2004, vol. 52, iss. 10, pp. 1183–1185. https://doi.org/10.1248/cpb.52.1183

Pierre A.C., Pajonk G.M. Chemistry of Aerogels and Their Applications. Chemical Reviews, 2003, vol. 34, iss. 4, pp. 4243–4266. https://doi.org/10.1002/chin.200304237

Shahidi F., Abuzaytoun R. Chitin, Chitosan, and Co-Products: Chemistry, Production, Applications, and Health Effects. Advances in Food and Nutrition Research, 2005, vol. 49, pp. 93–135. https://doi.org/10.1016/S1043-4526(05)49003-8

Published

2023-12-15

How to Cite

Brovko О., Palamarchuk И., Gorshkova Н., Bogdanovich Н., and Ivakhnov А. “Sorption and Structural Properties of Aerogel Materials Based on Biopolymers”. Lesnoy Zhurnal (Forestry Journal), no. 6, Dec. 2023, pp. 190-03, doi:10.37482/0536-1036-2023-6-190-203.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES

Most read articles by the same author(s)