Wood-Composite Boards with a Low Coefficient of Linear Thermal Expansion
DOI:
https://doi.org/10.37482/0536-1036-2024-2-142-151Keywords:
mechanical activation, coefficient of linear thermal expansion, CLTE, tooling, wood boards without binders, hydrodynamic processing, compositeAbstract
A number of industries require materials with a low coefficient of linear thermal expansion (CLTE), in particular, in the production of satellite spherical antennas. The latter are formed from composites containing carbon fibers and synthetic resins. The composition is cured by heating up to 180 °C. This leads to a thermal expansion of the mold and a change in the geometric characteristics of the product. Therefore, specific requirements are imposed on the materials for making molds. The high cost of special materials used for molds determines the need to search for other materials with a low CLTE. Wood is a possible solution to this problem. Its CLTE along the fibers is less than that of the vast majority of materials, and is approximately 3 ‧ 10-6 K–1, which is comparable to special materials. However, the expansion of wood across the fibers is much higher than the longitudinal one, which excludes the use of solid wood. Anisotropy can be reduced by creating a composite in which the fibers are uniformly oriented in all structural directions, bringing the value of wood expansion across the fibers closer to the value of expansion along the fibers. The traditional approach to producing wood composites, based on the use of synthetic adhesives, fails to achieve a noticeable reduction in thermal expansion due to the high CLTE of adhesives The use of boards made of hydrodynamically activated wood particles without binders is promising. Three series of experiments have been carried out: with varying the density of the boards, preliminary thermal modification of the original wood and the use of alkali during hydrodynamic processing. The thermal expansion study has been carried out using the NETZSCH DIL-402 C induction dilatometer in dynamic mode with a heating rate of 2 K/min. It has been established that thermal expansion increases with increasing density.The average CLTE at a density of 950 kg/m3 is 12 ‧10–6 K–1 and at a density of 1,100 kg/m3 it is 17‧10–6 K–1. At a comparable density, the thermal expansion of boards without binders is significantly lower than that of fiberboards (MDF). Preliminary thermal modification of wood does not significantly affect the CLTE of the boards. The use of alkali in the hydrodynamic treatment also has no effect.
Downloads
References
Азаров В.И., Буров А.В., Оболенская А.В. Химия древесины и синтетических полимеров. СПб.; М.; Краснодар: Лань, 2010. 624 с. Azarov V.I., Burov A.V., Obolenskaya A.V. Chemistry of Wood and Synthetic Polymers. St. Petersburg, Moscow, Krasnodar, Lan’ Publ., 2010. 624 p. (In Russ.).
Алашкевич Ю.Д., Васютин В.Г., Емельянов С.В., Кадочкина И.А. Влияние кавитационных сил на размол волокон в безножевой установке // Переработка растительного сырья и утилизация отходов: cб. тр. Красноярск, 1995. Вып. 2. С. 158–161. Alashkevich Yu.D., Vasyutin V.G., Emel’yanov S.V., Kadochkina I.A. The Influence of Cavitation Forces on Fiber Grinding in a Knifeless Plant. Processing of Plant Materials and Waste Disposal: Collected Papers. Krasnoyarsk, 1995, iss. 2, pp. 158–161. (In Russ.).
Баяндин М.А., Ермолин В.Н., Елисеев С.Г. Влияние механоактивации на аутогезионные свойства древесины // Хвойные бореал. зоны. 2013. Т. XXI, № 1–2. С. 159–163. Bayandin M.A., Ermolin V.N., Eliseev S.G. The Influence of Mechanical Activation on the Autohesive Properties of Wood. Khvoinye boreal’noi zony = Conifers of the Boreal Area, 2013, vol. XXI, no. 1–2, pp. 159–163. (In Russ.).
Белоглазов А.П., Габов А.В., Елистратов В.И. Перспективы конструирования оправок с малым КЛТР для изготовления рефлекторов // Решетнев. чтения. 2014. Ч. 1. С. 49–50. Beloglazov A.P., Gabov A.V., Elistratov V.I. Prospects of Mandrels Designing with Small Thermal Expansion Coefficient for Manufacturing Reflectors. Reshetnevskiye chetniya = Reshetnev Readings, 2014, part 1, pp. 49–50. (In Russ.).
Биткин В.Е., Жидкова О.Г., Комаров В.А. Выбор материалов для изготовления размеростабильных несущих конструкций // Вестн. Самар. ун-та. Аэрокосм. техника, технологии и машиностроение. 2018. Т. 17, № 1. С. 100–117. Bitkin V.E., Zhidkova O.G., Komarov V.A. Choice of Materials for Producing Dimensionally Stable Load-Carrying Structures. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroyeniye = Vestnik of Samara University. Aerospace and Mechanical Engineering, 2018, vol. 17, no. 1, pp. 100–117. (In Russ.). https://doi.org/10.18287/2541-7533-2018-17-1-100-117
Бокщанин Ю.Р. Новое в лесопилении и использовании отходов за рубежом. М.: Лесн. пром-сть, 1969. 122 с. Bokshchanin Yu.R. Novelties in Sawmilling and Waste Management Abroad. Moscow, Lesnaya promyshlennost’ Publ., 1969. 122 p. (In Russ.).
Вараксин Ф.Д., Ступнев Г.К. Основные направления технического прогресса лесной и деревообрабатывающей промышленности. М.: Лесн. пром-сть, 1974. 400 с. Varaksin F.D., Stupnev G.K. Forest and Woodworking Industries Main Progressive Development Trends. Moscow, Lesnaya promyshlennost’ Publ., 1974. 400 p. (In Russ.).
Ермолин В.Н., Баяндин М.А., Казицин С.Н., Намятов А.В. Формирование структуры плит малой плотности из гидродинамически активированных мягких отходов деревообработки // Изв. вузов. Лесн. журн. 2019. № 5. С. 148–157. Ermolin V.N., Bayandin M.A., Kazitsin S.N., Namyatov A.V. Structure Formation of Low-Density Boards from Hydrodynamically Activated Softwood Waste. Lesnoy Zhurnal = Russian Forestry Journal, 2019, no. 5, pp. 148–157. (In Russ.). https://doi.org/10.17238/issn0536-1036.2019.5.148
Ермолин В.Н., Баяндин М.А., Казицин С.Н., Намятов А.В., Острякова В.А. Водостойкость древесных плит, получаемых без использования связующих веществ // Изв. вузов. Лесн. журн. 2020. № 3. С. 151–158. Ermolin V.N., Bayandin M.A., Kazitsin S.N., Namyatov A.V., Ostryakova V.A. Water Resistance of Wood-Based Panels Made without Binders. Lesnoy Zhurnal = Russian Forestry Journal, 2020, no. 3, pp. 151–158. (In Russ.). https://doi.org/10.37482/0536-1036-2020-3-151-158
Киселева О.А., Ярцев В.П. Влияние плотности на термическое расширение древесных плит // Актуальные проблемы современного строительства: сб. тр. Пенза: ПГАСА, 2003. Ч. 2. С. 63–66. Kiseleva O.A., Yartsev V.P. The Influence of Density on the Thermal Expansion of Wood-Based Panels. Aktual’nye problemy sovremennogo stroitel’stva: Collected Papers. Penza, Penza State Academy of Architecture and Civil Engineering Publ., 2003, part 2, pp. 63–66. (In Russ.).
Эриньш П.П. Строение и свойства древесины как многокомпонентной полимерной системы // Химия древесины. 1977. № 1. С. 8–25. Erin’sh P.P. The Structure and Properties of Wood as a Multicomponent Polymer System. Khimiya drevesiny, 1977, no. 1, pp. 8–25. (In Russ.).
Эриньш П.П., Алксне И.М. Проникновение мономера в клеточные стенки древесины // Химия древесины. 1970. Вып. 6. С. 9–17. Erin’sh P.P., Alksne I.M. Monomer Penetration into Wood Cell Walls. Khimiya drevesiny, 1970, iss. 6, pp. 9–17. (In Russ.).
Alemdar A., Sain M. Biocomposites from Wheat Straw Nanofibers: Morphology, Thermal and Mechanical Properties. Composites Science and Technology, 2008, vol. 68, iss. 2, pp. 557–565. https://doi.org/10.1016/j.compscitech.2007.05.044
Badel E., Delisee C., Lux J. 3D Structural Characterisation, Deformation Measurements and Assessment of Low-Density Wood Fibreboard under Compression: The Use of X-Ray Microtomography. Composites Science and Technology, 2008, vol. 68, iss. 7–8, pp. 1654–1663. https://doi.org/10.1016/j.compscitech.2008.02.013
Cervin N.T., Andersson L., Ng J.B.S., Olin P., Bergström L., Wågberg L. Lightweight and Strong Cellulose Materials Made from Aqueous Foams Stabilized by Nanofibrillated Cellulose. Biomacromolecules, 2013, vol. 14, iss. 2, pp. 503–511. https://doi.org/10.1021/bm301755u
Hendershot O.P. Thermal Expansion of Wood. Science, 1924, vol. 60, iss. 1559, pp. 456–457. https://doi.org/10.1126/science.60.1559.456
Hidaka H., Kim U.-J., Wada M. Synchrotron X-Ray Fiber Diffraction Study on the Thermal Expansion Behavior of Cellulose Crystals in Tension Wood of Japanese Poplar in the Low-Temperature Region. Holzforschung, 2010, vol. 64, iss. 2, pp. 167–171. https://doi.org/10.1515/hf.2010.028
Hori R., Wada M. The Thermal Expansion of Wood Cellulose Crystals. Cellulose, 2005, vol. 12, pp. 479–484. https://doi.org/10.1007/s10570-005-5967-5
Ramiah M.V., Goring D.A.I. The Thermal Expansion of Cellulose, Hemicellulose, and Lignin. Journal of Polymer Science Part C: Polymer Symposia, 1965, vol. 11, iss. 1, pp. 27–48. https://doi.org/10.1002/polc.5070110105
Villari E.M. Sur le Propriétés Physiques du Bois Conpé Parallèment ou Transversalement aux Fibres. Annales de Chimie et de Physique, 1868, vol. 14, pp. 503–504. (In French).