The Use of Cationites in the Modification of Kraft Lignin with Nitrous Acid

Authors

DOI:

https://doi.org/10.37482/0536-1036-2025-6-155-168

Keywords:

lignin, kraft lignin, modification, modified lignin, nitrous acid, nitrosation, solidphase catalysis, electron spectroscopy, infrared spectroscopy

Abstract

Kraft lignin is the largest-tonnage technical lignin formed during kraft pulp cooking. According to statistics, approximately 70 mln t of such waste are generated annually. Most of it is disposed of in the system of chemicals recovery and thermal energy generation. Approximately 10…20 % of kraft lignin can be used to obtain a variety of products, for example, in the production of polymers, low-molecular compounds, activated carbon production, rubber industry, etc. For this purpose, kraft lignin is subjected to various types of modifications, including chemical ones: periodate oxidation, halogenation, sulfonation, sulfomethylation, nitration, nitrosation, etc. This article presents a new method for modification of kraft lignin with nitrous acid in a water-dioxane medium using solid-phase catalysis. The cation-exchange resins in H-form containing sulfogroups (cationite KU-2-8 and wofatite) have been used as catalysts. The optimal reagent consumption has been determined to be 50 % sodium nitrite and 230 % cationite from kraft lignin. It has been shown that the developed method and the well-known one using sulfuric acid as a catalyst give similar results. The molecular and electronic spectra of modified kraft lignin have been studied. In the electronic spectra of modified kraft lignin, a new absorption band appears characteristic of the nitroso group in the region of 400…500 nm with a maximum at 451 nm. By deconvolution, the electronic spectrum of modified kraft lignin is approximated by 6 Gaussians with an error of 2.5 %, while for the initial kraft lignin the spectrum can be described by 4 Gaussians with an error of 3.4 %. In contrast to the IR spectrum of kraft lignin, new absorption bands appear in the spectra of modified lignin at 615, 760, 1,330 and 1,550 cm–1, which are due to vibrations of NO bonds.

Downloads

Download data is not yet available.

Author Biographies

Yuriy G. Khabarov, Northern (Arctic) Federal University named after M.V. Lomonosov

Doctor of Chemistry, Porf.; ResearcherID: P-1802-2015

Evgeniy A. Skripnikov, Northern (Arctic) Federal University named after M.V. Lomonosov

Postgraduate Student; ResearcherID: AFB-6325-2022

Viacheslav A. Veshnyakov, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Chemistry; ResearcherID: E-3882-2017

Vadim A. Plakhin, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Chemistry; ResearcherID: AAH-6544-2020

References

Кожевников А.Ю., Ульяновская С.Л., Семушина М.П., Покрышкин С.А., Ладесов А.В., Пиковской И.И., Косяков Д.С. Модификация сульфатного лигнина периодатом натрия с целью получения сорбента 1,1-диметилгидразина // Журн. приклад. химии. 2017. Т. 90, № 4. С. 416–422. Kozhevnikov A.Yu., Ul’yanovskaya S.L., Semushina M.P., Pokryshkin S.A., Ladesov A.V., Pikovskoi I.I., Kosyakov D.S. Modification of Sulfate Lignin with Sodium Periodate to Obtain Sorbent of 1,1-Dimethylhydrazine. Zhurnal prikladnoj khimii = Russian Journal of Applied Chemistry, 2017, vol. 90, pp. 516–521. https://doi.org/10.1134/S1070427217040048

Патент 2753533 РФ. C07G 1/00 (2021.05); C08H 6/00 (2021.05). Способ модификации сульфатного лигнина / А.Ю. Гаркотин, Ю.Г. Хабаров, В.А. Вешняков // Бюл. 2021. № 23. Garkotin A.I., Khabarov I.G., Veshniakov V.A. Method for Modifying Kraft Lignin. Patent. RF, no. RU 2753533 C1, 2021. (In Russ.).

Протопопов А.В., Клевцова М.В. Химическая модификация сульфатного лигнина ароматическими аминокислотами // Ползуновск. вестн. 2014. № 3. С. 42–44. Protopopov A.V., Klevtsova M.V. Chemical Modification of Sulfate Lignin with Aromatic Amino Acids. Polzunovskiy vestnik, 2014, no. 3, pp. 42–44. (In Russ.).

Тарасевич Б.Н. ИК спектры основных классов органических соединений. Справочные материалы. М., 2012. 55 с. Tarasevich B.N. IR Spectra of the Main Classes of Organic Compounds. Reference Materials. Moscow, 2012. 55 p. (In Russ.).

Хабаров Ю.Г., Вешняков В.А., Плахин В.А., Скрипников Е.А., Овчинников Д.В. Нитрозирование лигносульфонатов в условиях твердофазного катализа // Изв. вузов. Лесн. журн. 2024. № 3. С. 175–187. Khabarov Yu.G., Veshnyakov V.A., Plakhin V.A., Skripnikov E.A., Ovchinnikov D.V. Nitrosation of Lignosulfonates under Solid-Phase Catalysis Conditions. Lesnoy Zhurnal = Russian Forestry Journal, 2024, no. 3, pp. 175–187. (In Russ.). https://doi.org/10.37482/0536-1036-2024-3-175-187

Хабаров Ю.Г., Кузяков Н.Ю., Вешняков В.А., Комарова Г.В., Гаркотин А.Ю. Исследование нитрования сульфатного лигнина в гомогенных условиях с помощью электронной спектроскопии // Изв. Акад. наук. Сер.: Химическая. 2016. Т. 65, № 12. С. 2925–2931. Khabarov Yu.G., Kuzyakov N.Yu., Veshnyakov V.A., Komarova G.V., Garkotin A.Yu. Nitration of Sulfate Lignin under Homogeneous Conditions Studied by Electron Spectroscopy. Izvestiya Akademii nauk. Seriya: Khimicheskaya = Russian Chemical Bulletin, 2016, vol. 65, pp. 2925–2931. https://doi.org/10.1007/s11172-016-1679-2

Хай Д.Т.Т., Гоготов А.Ф., Тай Д.Т. Нитрит-нитратная модификация лигнина как способ получения ингибиторов термополимеризации пироконденсатов // Вестн. ИрГТУ. 2011. № 4(51). С. 100–104. Hai D.T.T., Gogotov A.F., Tai D.С. Nitrite-Nitrate Modification of Lignin as a Method to Obtain Pyrocondensate Thermopolymerization Inhibitors. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta = Proceedings of Irkutsk State Technical University, 2011, no. 4(51), pp. 100–104. (In Russ.).

Ahvazi B., Wojciechowicz O., Ton-That T.-M., Hawari J. Preparation of Lignopolyols from Wheat Straw Soda Lignin. Journal of Agricultural and Food Chemistry, 2011, vol. 59, iss. 19, pp. 10505–10516. https://doi.org/10.1021/jf202452m

Argyropoulos D.D.S., Crestini C., Dahlstrand C., Furusjö E., Gioia C., Jedvert K., Henriksson G., Hulteberg C., Lawoko M., Pierrou C., Samec J.S.M., Subbotina E., Wallmo H., Wimby M. Kraft Lignin: A Valuable, Sustainable Resource, Opportunities and Challenges. ChemSusChem, 2023, vol. 16, iss. 23, art. no. e202300492. https://doi.org/10.1002/cssc.202300492

Bai L., Greca L.G., Xiang W., Lehtonen J., Huan S., Nugroho R.W.N., Tardy B.L., Rojas O.J. Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces. Langmuir, 2019, vol. 35, iss. 3, pp. 571–588. https://doi.org/10.1021/acs.langmuir.8b01288

Bass G.F., Epps T.H. Recent Developments towards Performance-Enhancing Lignin-Based Polymers. Polymer Chemistry, 2021, vol. 12, no. 29, pp. 4130–4158. https://doi.org/10.1039/D1PY00694K

Blanco I., Cicala G., Latteri A., Saccullo G., El-Sabbagh A.M.M., Ziegmann G. Thermal Characterization of a Series of Lignin-Based Polypropylene Blends. Journal of Thermal Analysis and Calorimetry, 2017, vol. 127, pp. 147–153. https://doi.org/10.1007/s10973-016-5596-2

Dahlstrand C., Orebom A., Samec J., Sawadjoon S., Löfstedt J. Composition Comprising Derivatized Lignin for Fuel Production. Patent Application, no. WO 2016204682, 2016.

Di Francesco D., Rigo D., Reddy Baddigam K., Mathew A.P., Hedin N., Selva M., Samec J.S. A New Family of Renewable Thermosets: Kraft Lignin Poly-adipates. ChemSusChem, 2022, vol. 15, iss. 11, art. no. e202200326. https://doi.org/10.1002/cssc.202200326

Duval A., Lawoko M. A Review on Lignin-Based Polymeric, Micro- and Nano-Structured Materials. Reactive and Functional Polymers, 2014, vol. 85, pp. 78–96. https://doi.org/10.1016/j.reactfunctpolym.2014.09.017

Goldschmid O., Maranville L.F. Improved Spent Sulfite Liquor Determination by Nitrosolignin Method. Analytical Chemistry, 1959, vol. 31, iss. 3, pp. 370–374. https://doi.org/10.1021/ac60147a012

Graupner N. Application of Lignin as Natural Adhesion Promoter in Cotton Fibre-Reinforced Poly(Lactic Acid) (PLA) Composites. Journal of Materials Science, 2008, vol. 43, pp. 5222–5229. https://doi.org/10.1007/s10853-008-2762-3

Grigsby W.J., Scott S.M., Plowman-Holmes M.I., Middlewood P.G., Recabar K. Combination and Processing Keratin with Lignin as Biocomposite Materials for Additive Manufacturing Technology. Acta Biomaterialia, 2020, vol. 104, pp. 95–103. https://doi.org/10.1016/j.actbio.2019.12.026

Laurichesse S., Avérous L. Chemical Modification of Lignins: Towards Biobased Polymers. Progress in Polymer Science, 2014, vol. 39, iss. 7, pp. 1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

Lewis H.F., Brauns F.E., Buchanan M.A., Brookbank E.B. Lignin Esters of Monoand Dibasic Aliphatic Acids. Industrial & Engineering Chemistry, 1943, vol. 35, iss. 10, pp. 1113–1117. https://doi.org/10.1021/ie50406a020

Li Y., Li J., Ren B., Cheng H. Conversion of Lignin to Nitrogenous Chemicals and Functional Materials. Materials, 2024, vol. 17, no. 20, art. no. 5110. https://doi.org/10.3390/ma17205110

Llevot A., Grau E., Carlotti S., Grelier S., Cramail H. From Lignin-Derived Aromatic Compounds to Novel Biobased Polymers. Macromolecular Rapid Communications, 2016, vol. 37, iss. 1, pp. 9–28. https://doi.org/10.1002/marc.201500474

Naqvi M., Yan J., Dahlquist E. Black Liquor Gasification Integrated in Pulp and Paper Mills: A Critical Review. Bioresource Technology, 2010, vol. 101, iss. 21, pp. 8001– 8015. https://doi.org/10.1016/j.biortech.2010.05.013

Orebom A., Verendel J.J., Samec J.S.M. High Yields of Bio Oils from Hydrothermal Processing of Thin Black Liquor without the Use of Catalysts or Capping Agents. ACS Omega, 2018, vol. 3, iss. 6, pp. 6757–6763. https://doi.org/10.1021/acsomega.8b00854

Patil S.V., Argyropoulos D.S. Stable Organic Radicals in Lignin: A Review. ChemSusChem, 2017, vol. 10, iss. 17, pp. 3284–3303. https://doi.org/10.1002/cssc.201700869

Qian Y., Zhong X., Li Y., Qiu X. Fabrication of Uniform Lignin Colloidal Spheres for Developing Natural Broad-Spectrum Sunscreens with High Sun Protection Factor. Industrial Crops and Products, 2017, vol. 101, pp. 54–60. https://doi.org/10.1016/j.indcrop.2017.03.001

Rochester J.R. Bisphenol A and Human Health: A Review of the Literature. Reproductive Toxicology, 2013, vol. 42, pp. 132–155. https://doi.org/10.1016/j.reprotox.2013.08.008

Sadeghifar H., Cui C., Argyropoulos D.S. Toward Thermoplastic Lignin Polymers. Part 1. Selective Masking of Phenolic Hydroxyl Groups in Kraft Lignins via Methylation and Oxypropylation Chemistries. Industrial & Engineering Chemistry Research, 2012, vol. 51, iss. 51, pp. 16713–16720. https://doi.org/10.1021/ie301848j

Samec J., Löfstedt J., Dahlstrand C., Orebom A., Sawadjoon S. Composition Comprising Esters of Lignin and Oil or Fatty Acids. Patent US, no. US 10030147, 2016.

Sansaniwal S.K., Pal K., Rosen M.A., Tyagi S.K. Recent Advances in the Development of Biomass Gasification Technology: A Comprehensive Review. Renewable and Sustainable Energy Reviews, 2017, vol. 72, pp. 363–384. https://doi.org/10.1016/j.rser.2017.01.038

Sen S., Patil S., Argyropoulos D.S. Thermal Properties of Lignin in Copolymers, Blends, and Composites: A Review. Green Chemistry, 2015, vol. 17, iss. 11, pp. 4862–4887. https://doi.org/10.1039/C5GC01066G

Tomani P., Axegård P., Berglin N., Lovell A., Nordgren D. Integration of Lignin Removal into a Kraft Pulp Mill and Use of Lignin as a Biofuel. Cellulose Chemistry and Technology, 2011, vol. 45, iss. 7–8, pp. 533–540.

Udeni Gunathilake T.M.S., Ching Y.C., Chuah C.H. Enhancement of Curcumin Bioavailability Using Nanocellulose Reinforced Chitosan Hydrogel. Polymers, 2017, vol. 9, no. 2, art. no. 64. https://doi.org/10.3390/polym9020064

Wallmo H., Theliander H., Jönsson A.-S., Wallberg O., Lindgren K. Chemical Pulping: The Influence of Hemicelluloses during the Precipitation of Lignin in Kraft Black Liquor. Nordic Pulp & Paper Research Journal, 2009, vol. 24, iss. 2, pp. 165–171. https://doi.org/10.3183/npprj-2009-24-02-p165-171

Wang H., Eberhardt T.L., Wang C., Gao S., Pan H. Demethylation of Alkali Lignin with Halogen Acids and its Application to Phenolic Resins. Polymers, 2019, vol. 11, no. 11, art. no. 1771. https://doi.org/10.3390/polym11111771

Williams D.L.H. Chapter 6 – Nitrosation. Nitrosation Reactions and the Chemistry of Nitric Oxide. Amsterdam, Elsevier Publ., 2004, pp. 105–115. https://doi.org/10.1016/B978-044451721-0/50007-4

Zinovyev G., Sumerskii I., Korntner P., Sulaeva I., Rosenau T., Potthast A. Molar Mass-Dependent Profiles of Functional Groups and Carbohydrates in Kraft Lignin. Journal of Wood Chemistry and Technology, 2017, vol. 37, iss. 3, pp. 171–183. https://doi.org/10.1080/02773813.2016.1253103

Published

2025-12-19

How to Cite

Khabarov Ю., Skripnikov Е., Veshnyakov В., and Plakhin В. “The Use of Cationites in the Modification of Kraft Lignin With Nitrous Acid”. Lesnoy Zhurnal (Forestry Journal), no. 6, Dec. 2025, pp. 155-68, doi:10.37482/0536-1036-2025-6-155-168.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES