Lactic Acid Synthesis by Fungus Rhizopus oryzae F-1030 on Growth Media Based on Sulphite Liquors
DOI:
https://doi.org/10.37482/0536-1036-2020-2-146-158Keywords:
sulfite liquor, R. oryzae, semicontinuous culture method, batch culture method, lactic acidAbstract
Lactic acid is an industrially important product with an expanding consumer market. However, lactic acid production and isolation methods used at the present time are not effective enough, lead to the formation of large amounts of polluting waste and their recycling is economically unproftable. At the same time, a half of the worldʼs lactic acid production is carried out by the microbiological method based on the fermentation of such costly sugarcontaining substrates as sucrose, molasses, treacle, sugar syrup, etc. These sugar-containing substrates usage signifcantly increases the fnal product cost. In order to solve the economic
and environmental problems of lactic acid production it is necessary to revise the current raw material source and put cheaper and readily available sources of carbohydrates, such as sulphite liquor formed during sulphite pulping, into the lactic acid production. In turn to enhance the economic efciency of the Russian pulp and paper production it is necessary to use such paper production by-products as sulphite liquor to the fullest extent possible. Sulphite liquor is a chemical complex of inorganic and organic compounds such as monoand oligosaccharides. The article considers the dependence of the output of lactic acid
synthesized on the sulphite liquor medium by the fngus R. oryzae F-1030 on the used method of cultivation. In case of the semicontinuous culture method, the culture liquid was replaced with the similar volume of the sterile growth medium with the fungus biomass saving when the sugars in the medium were depleted. In case of the batch culture method, the synthesized lactic acid was precipitated with calcium hydroxide and the reducing substances recovery in the culture liquid was achieved by adding concentrated sulphite liquor when the sugars in the medium were depleted. The study demonstrates that the largest amount of synthesized lactic acid is obtained when using the semicontinuous method for cultivation of the fngus on the sulphite liquor medium prepared according to the technology recommended in the industry during preparation growth media for yeast cultivation. If it is impossible to carry out a full industrial pre-treatment of sulphite liquor, it is recommended to use the batch culture method for the fungus in order to obtain more synthesized lactic acid.
For citation: Mingazova L.A., Kanarsky A.V., Kryakunova E.V., Kanarskaya Z.A. Lactic Acid Synthesis by the Fungus Rhizopus Oryzae F-1030 on Growth Media Based on Sulphite Liquors. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 2, pp. 146–158. DOI: 10.37482/0536-1036-2020-2-146-158
Downloads
References
Голомб Л.М. Физико-химические основы технологии выпускных форм красителей. Ленинград: химия, 1974. 224 с. [Golomb L.M. Physics and Chemistry of the Technology of Commercial Dyes. Leningrad, Khimiya Publ., 1974. 224 p.].
Грачева И.М., Гаврилова Н.Н., Иванова Л.А. Технология микробных белковых препаратов, аминокислот и жиров. М.: Пищевая пром-сть, 1980. 448 с. [Gracheva I.M., Gavrilova N.N., Ivanova L.A. Technology of Microbial Protein Preparations, Amino Acids and Fats. Moscow, Pishchevaya promyshlennostʼ Publ., 1980. 448 p.].
Григорьева Р.З., Куракин М.С. Товароведение продовольственных товаров. Кемерово: КемтИПП, 2008. 115 с. [Grigorʼyeva R.Z., Kurakin M.S. Food Commodity Science.Kemerovo, KemTIPP Publ., 2008. 115 p.].
Зиганшин Д.Д., Сироткин А.С. Особенности глубинного и поверхностного культивирования грибов Trichodermaдля получения биопрепаратов на основе клеток гриба // вестн. технол. ун-та. 2017. т. 20, № 10. с. 155–158. [Ziganshin D.D., Sirotkin A.S. Features of the Deep and Surface Cultivation of Trichoderma Fungi for Obtaining Biological Products Based on Fungal Cells. Vestnik tekhnologicheskogo universiteta[Herald of Kazan Technological University], 2017, vol. 20, no. 10, pp. 155–158].
Коренман И.М.Фотометрический анализ. Методы определения органических соединений. М.: химия, 1970. 343 с. [Korenman I.M. Photometric Analysis. Methods for Determination of Organic Compounds. Moscow, Khimiya Publ., 1970. 343 p.].
Корнеева О.С., Мотина Е.А., Яковлева С.Ф., Яковлев А.Н. Влияние условий культивирования на рост биомассы Yarrowia lipolytica– продуцента кормового белка // вестн. ВГУИТ. 2016. № 1. с. 182–185. [Korneeva O.S., Motina E.A., Yakovleva S.F., Yakovlev A.N. Effect of Culture Conditions on the Growth of Biomass Yarrowia lipolytica–Producing Protein Feed. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologiy [Proceedings of the Voronezh State University of Engineering Тechnologies], 2016, no. 1, pp. 182–185]. DOI: 10.20914/2310-1202-2016-1-182-185
Левина Е.А., Атыкян Н.А., Ревин В.В. Влияние источников углеродного и азотного питания на биосинтез целлюлаз грибами Lentinus tigrinus вКМ F-3616 D и Trichoderma viride вКМ F-1131 // вестн. вГУ. сер.: химия. Биология. Фармация. 2016. № 1. с. 85–93. [Levina E.A., Atykyan N.A., Revin V.V. The Effect of Carbon and Nitrogen Sources on the Production of Cellulases by Fungi Lentinus tigrinus VKM F-3616 D and Trichoderma viride VKM F-1131. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Khimiya. Biologiya. Farmatsiya [Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy], 2016, no. 1, pp. 85–93].
Мухин В.А. Влияние сернистого ангидрида на ксилотрофные грибы // Биораз-нообразие и биоресурсы Урала и сопредельных территорий: материалы II междунар. конф., Оренбург, 17–18 дек. 2002 г. Оренбург: Изд-во ОГПУ, 2002. 196 с. [Mukhin V.A. The Influence of SO2 on Wood-Destroying Fungi.Biodiversity and Biological Resources of the Urals and Adjacent Territories: Materials of II International Conference, Orenburg, December 17–18, 2002. Orenburg, OGPU Publ., 2002. 196 p.]. DOI: 10.13140/RG.2.1.3291.8806
Новожилов Е.В. Оценка биоресурса сульфитных щелоков как сырья для производства кормовых дрожжей // Изв. вузов лесн. журн. 1999. № 2-3. с. 180–188. [Novozhilov E.V. Evaluation of Sulfite Liquors Bioresource as Raw Material for Nutrient Yeast Production. Lesnoy Zhurnal[Russian Forestry Journal], 1999, no. 2-3, pp. 180–188]. URL: http://lesnoizhurnal.ru/upload/iblock/ab7/ab7f2300221c7ded546d5483246aa51a.pdf
Овчинников Ю.А. Биоорганическая химия. М.: Просвещение, 1987. 815 с. [Ovchinnikov Yu.A. Bioorganic Chemistry. Moscow, Prosveshcheniye Publ., 1987. 815 p.].
Переработка сульфатного и сульфитного щелоков / под ред. Б.Д. Богомолов [и др.]. М.: лесн. пром-сть, 1989. 360 с. [Processing of Sulfate and Sulfite Liquors. Ed. by B.D. Bogomolov et al. Moscow, Lesnaya promyshlennostʼ Publ., 1989. 360 p.].
Смирнов Р.Е.Производство сульфитных волокнистых полуфабрикатов. СПб.: СПбГТУРП, 2010. 146 с. [Smirnov R.E. Production of Sulphite Pulp. Saint Petersburg, SPbGTURP Publ., 2010. 146 p.].
Химия углеводородов нефти / под ред. Б.т. Брукса [и др.]. М.: Гостоптехиздат, 1959. т. 3. 583 с. [Chemistry of Petroleum Hydrocarbons. Ed. by B.T. Brooks et al. Moscow, Gostoptekhizdat Publ., 1959, vol. 3. 583 p.].
Шарков В.И., Сапотницкий С.А., Дмитриева О.А., Туманов И.Ф. Технология гидролизных производств. М.: лесн. пром-сть, 1973. 407 с. [Sharkov V.I., Sapotnitskiy S.A., Dmitriyeva O.A., Tumanov I.F. Technology of Hydrolysis Production. Moscow, Lesnaya promyshlennostʼ Publ., 1973. 407 p.].
Шинкарев С.М., Самуйленко А.Я., Неминущая Л.А., Скотникова Т.А., Павлен-ко И.В., Рубцова Г.Н., Канарский А.В., Мингазова Л.А. Совершенствование микробио-логического синтеза молочной кислоты // вестн. технол. ун-та. 2017. т. 20, № 18. с. 165–170. [Shinkarev S.M., Samujlenko A.I., Neminuschiy L.A., Skotnikova T.A., Pavlenko I.V., Rubtsova G.N., Kanarskiy A.V., Mingazova L.A. Improvement of Microbiological Synthesis of Lactic Acid. Vestnik tekhnologicheskogo universiteta [Herald of Kazan Technological University], 2017, vol. 20, no. 18, pp. 165–170].
Abd Alsaheb R.A., Aladdin A., Othman N.Z., Abd Malek R., Mei Leng O., Aziz R. et al. Lactic Acid Applications in Pharmaceutical and Cosmeceutical Industries. Journal of Chemical and Pharmaceutical Research, 2015, vol. 7, iss. 10, pp. 729–735.
Ghaffar T., Irshad M., Anwar Z., Aqil T., Zulifqar Z., Tariq A. et al. Recent Trends in Lactic Acid Biotechnology: A Brief Review on Production to Purification. Journal of Radiation Research and Applied Sciences, 2014, vol. 7, iss. 2, pp. 222–229. DOI: 10.1016/j.jrras.2014.03.002
Khalid K. An Overview of Lactic Acid Bacteria. International Journal of Biosciences,2011, vol. 1, no. 3, pp. 1–13.
Komesu A., Oliveira J.A.R.d., Martins L.H.d.S., Wolf Maciel M.R., Maciel Filho R. Lactic Acid Production to Purification: A Review. BioResources, 2017, vol. 12(2), pp. 4364–4383.
Martineza F.A.C., Balciunas E.M., Salgado J.M., Gonzalez J.M.D., Converti A., Oliveira R.P.D.S. Lactic Acid Properties, Applications and Production: A Review. Trends in Food Science & Technology, 2013, vol. 30, iss. 1, pp. 70–83. DOI: 10.1016/j.tifs.2012.11.007
Rattanachaikunsopon P., Phumkhachorn P. Lactic Acid Bacteria: Their Antimicrobial Compounds and Their Uses in Food Production.Annals of Biological Research, 2010, vol. 1(4), pp. 218–228.
Rhee S.J., Lee J.-E., Lee C.-H. Importance of Lactic Acid Bacteria in Asian Fermented Foods. Microbial Cell Factories, 2011, vol. 10, art. S5. DOI: 10.1186/1475-2859-10-S1-S5
Simion A.I., Grigoras C.G., Bardaşu L.E., Dabija A. Modelling of the Thermo-physical Lactic Acid Aqueous Solutions. Density and Viscosity. Food and Environment Safe-ty, 2012, vol. XI, iss. 4, pp. 49–58.
Wu X., Jiang S., Liu M., Pan L., Zheng Z., Luo S. Production of L-Lactic Acid by Rhizopus OryzaeUsing Semicontinuous Fermentation in Bioreactor. Journal of Industrial Microbiology & Biotechnology, 2011, vol. 38, pp. 565–571. DOI: 10.1007/s10295-010-0804-8
Yuwa-amornpitak T., Chookietwattana K. L-Lactic Acid Production from Cassava Starch by Thermotolerant Rhizopus microsporus LTH23. Journal of Biological Sciences, 2014, vol. 14, iss. 4. pp. 284–291. DOI: 10.3923/jbs.2014.284.291