Modifying Wood for Creation Plain Bearings of Timber Machines

Authors

DOI:

https://doi.org/10.37482/0536-1036-2020-5-155-165

Keywords:

tribotechnical parameters, wood-based materials, electrolytic coppering, wear resistance, thermal conductivity, stress state

Abstract

The use of modified wood in different friction pairs of timber machines and processing equipment is largely due to its high wear resistance, low coefficient of friction and good dissipative characteristics. The positive properties of composite materials are achieved by using technologies of volumetric modification and implantation of antifriction and heatconducting elements, as well as by forming a composite of crushed wood with the addition of modifying additives and three-dimensional reinforcement. The expansion of the scope of using composite materials in the designs of units with sliding friction pairs necessitates carrying out research on their performance and formation conditions for high level tribotechnical parameters: wear resistance, antifriction, heat resistance, etc. Lack of information on the effect from the factors providing the functional characteristics of wood-based materials,  including thermal conductivity and vibration absorption significantly complicates the problem analysis in design and technology when developing and producing bearing joints. Therefore, the purpose of this work was studying the conditions of contact interaction of plain bearings made of wood-metal composite materials, allowing for rheological effects, and developing the ways of control their tribotechnical parameters by changing the structure, composition and phase filler. Models of bearings of different types, which allow creating a regulated stress-strain state in sleeves and liners, were developed for these purposes. Research of the bearings performance made it possible to find vibration-damping properties when using suspended crushed fractions in the composite. Increased antifriction properties
are achieved in the process of wood modification with electrolytic copper, while the manufacturability of a bearing sleeve is achieved when the support is formed directly at the installation site. Unlike most of the used antifriction materials, the bushings wood maintains the stability of structure in conditions of volumetric compression at negative and positive temperatures, and the wear processes occurring on the contact surfaces of wood-metal bearings are followed by the compaction of the sleeve material. The subsequent destruction is predominantly of fatigue nature, initiated by the dynamics of vibrations and disturbances of the system; therefore, an important part of further research is the assessment of the relaxation ability of wood-metal composites under shock-vibration loading with optimization of their composition according to this criterion.
For citation: Pilyushina G.A., Pyrikov P.G., Pamfilov E.A., Danilyuk A.Ya., Kapustin V.V., Modifying Wood for Creation Plain Bearings of Timber Machines. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 5, pp. 155–165. DOI: 10.37482/0536-1036-2020-5-155-165
Funding: The research is carried out under the project “Research and Creation of Plain Bearings of Increased Wear Resistance Based on Wood-Metal Composite Materials” within the framework of the state assignment of the Ministry of Education and Science of the Russian Federation (project No. 9.10677.2018/11.12)

Downloads

Download data is not yet available.

Author Biographies

Г. А. Пилюшина, Bryansk State Technical University

Candidate of Engineering, Assoc. Prof.; ResearcherID: H-1699-2019

П. Г. Пыриков, Bryansk State Technical University

Doctor of Engineering, Prof.

Е. А. Памфилов, Bryansk State Technical University

Doctor of Engineering, Prof.; ResearcherID: H-1866-2019

А. Я. Данилюк, Bryansk State Technical University

Postgraduate Student

В. В. Капустин, Bryansk State Technical University

Postgraduate Student; ResearcherID: AAT-1199-2020

References

Аксенов А.А., Малюков С.В. Исследования зависимости триботехнических свойств сильно нагруженных подшипников из модифицированной древесины // Лесотехн. журн. 2016. № 1. С. 168–184. [Aksenov A.A., Malyukov S.V. Research of Dependence of Tribological Properties of Highly Loaded Bearings Made of Modified Wood. Lesotekhnicheskiy zhurnal [Forestry Engineering Journal], 2016, no. 1, pp. 168–184]. DOI: 10.12737/18740

Буренин В.В. Самосмазывающиеся подшипники скольжения // Приводная техника. 2002. № 6. С. 45–56. [Burenin V.V. Self-Lubricating Plain Bearings. Privodnayatekhnika, 2002, no. 6, pp. 45–56].

Геккер Ф.Р. Динамическая модель узлов трения, работающих без смазочных материалов // Трение и износ. 1993. № 6. С. 1051–1058. [Gekker F.R. Generalized Dynamic Model of ‘Dry’ Friction Units. Treniye i iznos [Journal of Friction and Wear], 1993, no. 6, pp. 1051–1058].

Купчинов Б.И., Белый В.А., Нешин А.И. Антифрикционный самосмазывающийся материал повышенной теплостойкости на основе древесины // Фрикционные и антифрикционные пластмассы. М.: МЛНТП, 1975. С. 62–66. [Kupchinov B.I., Belyy V.A., Neshin A.I. Antifriction Self-Lubricating Material of Increased Heat Resistance Based on Wood. Friction and Antifriction Plastic Materials. Moscow, MLNTP Publ., 1975, pp. 62–66].

Памфилов Е.А., Симин А.П., Шевелева Е.В. Исследование древеснометаллических композиционных материалов на основе модифицированной древесины// Деревообраб. пром-сть. 2004. № 1. С. 12–15. [Pamfilov E.A., Simin A.P., Sheveleva E.V. The Study of Wood-Metal Composite Materials Based on Modified Wood. Derevoobrabatyvayushchaya promyshlennost’, 2004, no. 1, pp. 12–15].

Патент № 2539022 Российская Федерация, МПК F16C 17/12, F16C 33/12, F16C 33/18. Подшипник скольжения и способ изготовления: № 2013131631/11: заявл. 09.07.2013: опубл. 10.01.12015 / Шамаев В.А., Медведев И.Н., Галаворян Р.А., Манаев В.А. [Shamaev V.A., Medvedev I.N., Galavorjan R.A., Manaev V.A. Plain Bearing and Method of Its Manufacture. Patent RF no. RU 2539022 C1, 2015].

Прокофьев Г.Ф., Дундин Н.И., Иванкин И.И., Банников А.А. Применение аэростатических опор при совершенствовании ленточнопильных станков для продольной распиловки древесины // Вестн. машиностроения. 2004. № 8. С. 9–12. [Prokofiev G.F., Dundin N.I., Ivankin I.I., Bannikov A.A. The Use of Aerostatic Bearings in the Improvement of Bandsaw Machines for Longitudinal Sawing of Wood. Vestnik mashinostroyeniya [Russian Engineering Research], 2004, no. 8, pp. 9–12].

Симин А.П. Повышение долговечности вкладышей подшипников скольжения, изготавливаемых из композиционных материалов на основе растительных полимеров: автореф. дис. ... канд. техн. наук. Брянск, 2003. 20 с. [Simin A.P. Increasing the Durability of Plain Bearing Liners Made of Composite Materials Based on Plant Polymers: Cand. Eng. Sci. Diss. Abs. Bryansk, 2003. 20 p.].

Смольяков И.А., Ясенов В.В., Белокуров В.П. Износостойкость антифрикционных материалов на основе модифицированной древесины // Технология и оборудование деревообработки в XXI веке: межвуз. сб. науч. тр. Воронеж: ВГЛТА, 2003. С. 158–160. [Smol’yakov I.A., Yasenov V.V. Belokurov V.P. Wear Resistance of Antifriction Materials Based on Modified Wood. Technology and Equipment for Woodworking inthe 21st Century: Inter-University Collection of Academic Papers. Voronezh, VGLTA Publ., 2003, pp. 158–160].

Хухрянский П.Н. Прессование древесины. 3-е изд., перераб. и доп. М.: Лесн. пром-ть, 1964. 351 с. [Khukhryanskiy P.N. Pressing of Wood. Moscow, Lesnaya promyshlennost’ Publ., 1964. 351 p].

Шамаев В.А., Никулина Н.С., Медведев И.Н. Модифицирование древесины: монография. М.: ФЛИНТА, 2013. 448 с. [Shamaev V.A., Nikulina N.S., Medvedev I.N. Wood Modification: Monograph. Moscow, FLINTA Publ., 2013. 448 p.].

Bos J., Moes H. Frictional Heating of Tribological Contacts. Journal of Tribology, 1995, vol. 117, iss. 1, pp. 171–177. DOI: 10.1115/1.2830596

Bowden F.P., Tabor D. The Friction and Lubrication of Solids. Oxford, Clarendon Press, 1986. 374 p.

Kennedy F.E. Thermal and Thermomechanical Effects in Dry Sliding. Wear, 1984, vol. 100, iss. 1-3, pp. 453–476. DOI: 10.1016/0043-1648(84)90026-7

Komanduri R., Hou Z.B. Analysis of Heat Partition and Temperature Distribution in Sliding Systems. Wear, 2001, vol. 251, iss. 1-12, pp. 925–938. DOI: 10.1016/S0043-1648(01)00707-4

Komanduri R., Hou Z.B. Thermal Analysis of Dry Sleeve Bearings – A Comparison between Analytical, Numerical (Finite Element) and Experimental Results. Tribology International, 2001, vol. 34, iss. 3, pp. 145–160. DOI: 10.1016/S0301-679X(00)00144-4

Szeri A.Z. Fluid Film Lubrication. Cambridge, Cambridge University Press, 2011. 547 p.

Tian X., Kennedy F.E. Contact Surface Temperature Models for Finite Bodies in Dry and Boundary Lubricated Sliding. Journal of Tribology, 1993, vol. 115, iss. 3, pp. 411– 418. DOI: 10.1115/1.2921652

Tian X., Kennedy F.E. Maximum and Average Flash Temperatures in Sliding Contact. Journal of Tribology, 1994, vol. 116, iss. 1, pp. 167–174. DOI: 10.1115/1.2927035

Published

2020-11-11

How to Cite

Пилюшина, Г. А., П. Г. Пыриков, Е. А. Памфилов, А. Я. Данилюк, and В. В. Капустин. “Modifying Wood for Creation Plain Bearings of Timber Machines”. Lesnoy Zhurnal (Forestry Journal), no. 5, Nov. 2020, pp. 155-6, doi:10.37482/0536-1036-2020-5-155-165.

Issue

Section

MECHANICAL TECHNOLOGY OF WOOD AND WOOD SCIENCE

Most read articles by the same author(s)