Dynamics of Carbon Stocks in the Formation of Forests on Post-Agrogenic Lands
DOI:
https://doi.org/10.37482/0536-1036-2021-1-46-59Keywords:
fallows, post-agrogenic forests, chronosequence, carbon stocks, biogeocenosis components, soil, stand, forest floorAbstract
Carbon stocks were calculated in different components of bigeocenosis (soil, living ground cover, forest floor, undergrowth, underbrush and forest stand) using the example of a selected chronosequence of fallows (4 sample areas of different age, yrs: 16, 25, 63 and 130) in the Kargopol district of the Arkhangelsk region (middle taiga subzone, residual carbonate soils). The structure of carbon stocks of the forming plantations and its changes with the fallow age is estimated. It was found that a natural increase in carbon stocks and its redistribution between the soil and the forming phytocenosis occurs in the process of succession during the afforestation of arable lands. In plantations growing on young fallows, more than 86 % of the carbon stock is represented by carbon from the arable soil horizon. During the colonization of the fallow by forest vegetation the share of this pool decreases and already in the middle-aged 63-year-old forest it is 22 %, and in the mature 130-year-old forest it is only 7.6 %. In the structure of the total carbon stock in the middleaged plantation, the share of the stand reaches 69 %, and in the mature 130-year-old stand it is already 90 %. In plantations on young fallows, the structure of the main components of biogeocenosis (soil carbon, ground cover carbon and tree layer carbon) is characterized by a ratio of 9:1:0, whereas in plantations on old fallows of 63 and 130 years it is 2:0:8 and 1:0:9, respectively. The undergrowth and underbrush of the studied chronosequence are characterized by the small shares of carbon, which do not have a significant value in the structure of the ecosystem carbon pool. Forest floor in forming forest stands contributes significantly to the carbon structure of the biogeocenosis, although the total biogeocenosis carbon pool is 3–4 % and does not contribute to an increase in soil carbon stocks. In the system “soil – forest floor – living ground cover” the share of soil carbon decreases from 91 to 76–77 % with the increase in the age of plantation, while the share of formed forest floor in the middle-aged and mature forest is 16 and 20 %, respectively. In plantations on young fallows the ratio of these components of biogeocenosis is 9:0:1, whereas on old fallows it is 8:2:0. Leaving arable land on residual carbonate soils for self-overgrowth with forest vegetation and formation of forest plantations on them in the middle taiga subzone will lead to a gradual decrease in the carbon pool in the soil, but will contribute to the sequencing of carbon in the phytomass of perennial woody vegetation and in forest floor. These two components of biogeocenosis will serve as a sequenced carbon depot, supporting the biological cycle.
For citation: Nakvasina E.N., Shumilova Yu.N. Dynamics of Carbon Stocks in the Formation of Forests on Post-Agrogenic Lands. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 1, pp. 46–59. DOI: 10.37482/0536-1036-2021-1-46-59
Acknowledgements: The research was partially supported by RFBR and the Government of the Arkhangelsk region, grant No. 17-44-290111 and is based on descriptions of the sample areas included in the database of the Department of Forestry and Forest Management of NArFU.
Downloads
References
Аккумуляция углерода в лесных почвах и сукцессионный статус лесов / под ред. Н.В. Лукиной; ФГБУН , Центр по проблемам экологии и продуктивности лесов. М.: Т-во науч. изд. КМК , 2018. 232 с. [Carbon Accumulation in Forest Soils and Forest Succession Status. Ed. by N.V. Lukina. Moscow, KMK Publ., 2018. 232 p.].
Бобкова К.С., Машика А.В., Смагин А.В. Динамика содержания углерода органического вещества в среднетаежных ельниках на автоморфных почвах. СПб.: Наука, 2014. 270 с. [Bobkova K.S., Mashika A.V., Smagin A.V. Dynamics of Carbon Organic Matter Content of Spruce Forests in Middle Taiga Growing on Automorphic Soils. Saint Petersburg, Nauka Publ., 2014. 270 р.].
Гиниятуллин К.Г., Шинкарев А.А., Фазылова А.Г., Кузьмин К.И., Шинкарев А.А. (мл.) Пространственная неоднородность вторичной аккумуляции гумуса в старопахот-ных горизонтах залежных светло-серых лесных почв // Учен. зап. Казан. гос. ун-та. Сер.: Естеств. науки. 2012. Т. 154, кн. 4. С. 61–70. [Giniyatullin K.G., Shinkarev A.A., Fazylova A.G., Kuzmina K.I., Shinkarev A.A. (Jr.) Spatial Heterogeneity of Secondary Humus-Accumulation in Old-Arable Horizons of Fallow Light-Grey Forest Soils. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki [Proceedings of Kazan University. Natural Sciences Series], 2012, vol. 154, book 4, pp. 61–70].
Голубева Л.В., Наквасина Е.Н. Трансформация постагрогенных земель на карбонатных отложениях: моногр. Архангельск: Кира, 2017. 152 с. [Golubeva L.V., Nakvasina E.N. Transformation of Postagrogenic Lands on Carbonate Sediments. Arkhangelsk, Kira Publ., 2017. 152 p.].
Замолодчиков Д.Г. Системы оценки и прогноза запасов углерода в лесных экосистемах // Устойчивое лесопользование. 2011. № 4(29). С. 15–22. [Zamolodchikov D.G.Systems for Estimating and Forecasting Carbon Stocks in Forest Ecosystems. Ustoychivoye lesopol’zovaniye, 2011, no. 4(29), pp. 15–22].
Замолодчиков Д.Г., Честных О.В., Уткин А.И. Пулы и потоки углерода лесов Дальневосточного федерального округа // Хвойные бореальной зоны. 2006. Т. XXIII, № 3. С. 21–30. [Zamolodchikov D.G., Chestnykh O.V., Utkin A.I. Pools and Flows of Carbon in the Forests of the Far-Eastern Federal District. Hvojnye boreal’noj zony [Conifers of the boreal area], 2006, vol. 23, no. 3, pp. 21–30].
Иванов А.Л., Столбовой В.С. Инициатива «4-промилле» – новый глобальный вызов для почв России // Бюл. Почв. инст-та им. В.В. Докучаева. 2019. Вып. 98. С. 185–202. [Ivanov A.L., Stolbovoy V.S. The Initiative “4 per mille” – a New Global Challenge for the Soils of Russia. Byulleten Pochvennogo instituta imeni V.V. Dokuchaeva [Dokuchaev Soil Bulletin], 2019, iss. 98, pp. 185–202]. DOI: 10.19047/0136-1694-2019-98-185-202.
Курганова И.Н., Лопес де Гереню В.О., Мостовая А.С., Телеснина В.М. Влияние процессов естественного лесовосстановления на углеродный статус и микробиологическую активность постагрогенных почв в различных лесорастительных зонах европейской части России //Фундаментальные и прикладные вопросы лесного почвоведения: материалы докл. VI Всерос. науч. конф. с междунар. участием (Сыктывкар, 14–18 сент. 2015 г.). Сыктывкар: Коми НЦ УрО РАН , 2015. С. 152–154. [Kurganova I.N., Lopes de Uerenu V.O., Mostovaya A.S., Telesnina V.M. Influence of Natural Reforestation Processes on Carbon Status and Microbiological Activity of Postagrogenic Soils in Various Forest Growing Zones of the European Part of Russia. Fundamental and Applied Aspects of Forest Soil Science: Proceedings of the VI All-Russian Scientific Conference on Forest Soil Science with International Participation (Syktyvkar, Russia, September 14–18, 2015). Syktyvkar, Komi Science Centre UB RAS, 2015, pp. 152–154].
Люри Д.И., Горячкин С.В., Караваева Н.А., Денисенко Е.А., Нефедова Т.Г. Динамика сельскохозяйственных земель России в XX веке и постагрогенное восстановление растительности и почв. М.: ГЕОС , 2010. 416 с. [Lyuri D.I., Goryachkin S.V., Karavaeva N.А., Denisenko E.A., Nefedova T.G. Dynamics of Agricultural Lands of Russia in the 20th century and Postagrogenic Restoration of Soils and Vegetation. Moscow, GEOS Publ., 2010. 416 p.].
Методика информационно-аналитической оценки бюджета углерода лесных насаждений на локальном уровне // ЦЭПЛ РАН .: Режим доступа: http://old.cepl.rssi.ru/carbondoc/local/local1.doc (дата обращения: 07.10.19). [Methodology of Information and Analytical Assessment of the Carbon Budget of Forest Plantations at the Local Level. CEPF RAS].
Рыжова И.М., Ерохова А.А., Подвезенная М.А. Изменение запасов углерода в постагрогенных экосистемах в результате естественного восстановления лесов в Костромской области // Лесоведение. 2015. № 4. С. 307–317. [Ryzhova I.M., Erokhova A.A., Podvezennaya M.A. Alterations of the Carbon Storages in Postagrogenic Ecosystems Due to Natural Reforestation in Kostroma Oblast. Lesovedenie [Russian Journal of Forest Science], 2015, no. 4, pp. 307–317].
Телеснина В.М., Владыченский А.С. Особенности биологического круговорота в постагрогенных экосистемах южной тайги //Экологические функции лесных почв в естественных и нарушенных ландшафтах: памяти В.В. Никонова: материалы докл. IV Всерос. науч. конф. с междунар. участием (Апатиты, 12–16 сент. 2011 г.). Апатиты: Кольский НЦ , 2011. Ч. 1. С. 130–134. [Telesnina V.M., Vladychenskiy A.S. Features of Biological Cycle in Postagrogenic Ecosystems of Southern Taiga. Ecological Functions of Forest Soils in Natural and Damaged Landscapes: Proceedings of the 4th All-Russian Scientific Conference with International Participation in memory of V.V. Nikonov (Apatity, September 12–16, 2011). Apatity, KSC, 2011, part 1, pp. 130–134].
Титлянова А.А. Биологический круговорот углерода в травянистых биогеоценозах. Новосибирск: Наука, 1977. 219 с. [Titlyanova A.A. Biological Cycle of Carbon in Grass Biogeocenoses. Novosibirsk, Nauka Publ., 1977. 219 p.].
Уткин А.И., Замолодчиков Д.Г., Честных О.В. Пулы и потоки углерода в лесном фонде Архангельской области // Академическая наука и ее роль в развитии производительных сил в северных регионах России: материалы докл. Всерос. конф. с междунар. участием (г. Архангельск, 19–22 июня 2006 г.). Архангельск, 2006. С. 1–4. [Utkin A.I., Zamolodchikov D.G., Chestnykh O.V. Pools and Flows of Carbon in the Forests of the Arkhangelsk Region. Academic Science and Its Role in the Development of Productive Forces in the Northern Regions of Russia: Proceedings of the All-Russian Conference with International Participation. Arkhangelsk, 2006, pp. 1–4].
Уткин А.И., Замолодчиков Д.Г., Грабовский В.И., Курц В.А. Влияние объемов на углеродный баланс лесов России: прогнозный анализ по модели CBM-CFS3 // Тр. СПбНИИ ЛХ. 2014. № 1. С. 5–18. [Zamolodchikov D.G., Grabowsky V.I., Kurz W.A. Influence of Forest Harvest Rates on the Carbon Balance of Russian Forests: Projective Analysis Using the CBM-CFS3 Model. Trudy Sankt-Peterburgskogo nauchnoissledovatel’skogo instituta lesnogo khozyaystva [Proceedings of the Saint Petersburg Forestry Research Institute], 2014, no. 1, pр. 5–18].
Уткин А.И., Замолодчиков Д.Г., Гульбе Т.А., Гульбе Я.И. Аллометрические уравнения для фитомассы по данным деревьев сосны, ели, березы и осины в европейской части России // Лесоведение. 1996. № 6. С. 36–46. [Utkin A.I., Zamolodchikov D.G., Gulbe T.A., Gulbe Ya.I. Allometric Equations for Phytomass Based on the Data on Pine, Spruce, Birch and Aspen Trees in European Russia. Lesovedenie [Russian Journal of Forest Science], 1996, no. 6, pp. 36–46].
Чернова О.В., Рыжова И.М., Подвезенная М.А. Изменение величины и структуры запасов углерода в регионах южной тайги и лесостепи Европейской России за исторический период // Живые и биокосные системы. 2017. № 19. Режим доступа: http://www.jbks.ru/archive/issue-19/article-2 (дата обращения: 01.04.19). [Chernova O.V., Ryzhova I.M., Podvezennaya М.А. Changes of Organic Carbon Pools in the Southern Taiga and Forest-Steppe of European Russia during the Historical Period. Zhivyye i biokosnyye sistemy, 2017, no. 19].
Честных О.В., Замолодчиков Д.Г., Уткин А.И. Общие запасы биологического углерода и азота в почвах лесного фонда России // Лесоведение. 2004. № 4. С. 30–42. [Chestnykh O.V., Zamolodchikov D.G., Utkin A.I. Reserves of Biological Carbon and Nitrogen in Soils of Russian Forest Fund. Lesovedenie [Russian Journal of Forest Science], 2004, no. 4, pp. 30–42].
Щепащенко Д.Г., Мухортова Л.В., Швиденко А.З., Ведрова Э.В. Запасы органического углерода в почвах России // Почвоведение. 2013. № 2. С. 123–132. [Schepaschenko D.G., Shvidenko A.Z., Mukhortova L.V., Vedrova E.F. The Pool of Organic Carbon in the Soils of Russia. Pochvovedeniye [Eurasian Soil Science], 2013, no. 2, pp. 123–132]. DOI: 10.7868/S0032180X13020123
Яшин И.М., Кашанский А.Д. Ландшафтно-геохимическая диагностика и генезис почв Европейского Севера России: моногр. М.: РГАУ –МС ХА им. К.А. Тимирязева, 2015. 202 с. [Yashin I.M., Kashanskiy A.D. Landscape-Geochemical Diagnostics and Genesis of Soils of the European North of Russia: Monograph. Moscow, RSAU – MTAA Publ., 2015. 202 p.].
Chang R., Jin T., Lü Y., Liu G., Fu B. Soil Carbon and Nitrogen Changes Following Afforestation of Marginal Cropland across a Precipitation Gradient in Loess Plateau of China. PLoS ONE, 2014, vol. 9, iss. 1, art. e85426. DOI: 10.1371/journal.pone.0085426
Cukor J., Vacek Z., Linda R., Bílek L. Carbon Sequestration in Soil Following Afforestation of Former Agricultural Land in the Czech Republic. Central European Forestry Journal, 2017, vol. 63, iss. 2-3, pp. 97–109. DOI: 10.1515/forj-2017-0011
Enquist B.J., Niklas K.J. Global Allocation Rules for Patterns of Biomass Partitioning in Seed Plants. Science, 2002, vol. 295, iss. 5559, pp. 1517–1520. DOI: 10.1126/science.1066360
Gao Y., Tian J., Pang Y., Liu J. Soil Inorganic Carbon Sequestration Following Afforestation Is Probably Induced by Pedogenic Carbonate Formation in Northwest China. Frontiers in Plant. Science. 2017, vol. 8, art. 1282. DOI: 10.3389/fpls.2017.01282
Holubík О., Podrázský V., Vopravil J. , Khel T., Remeš J. Effect of Agricultural Lands Afforestation and Tree Species Composition on the Soil Reaction, Total Organic Carbon and Nitrogen Content in the Uppermost Mineral Soil Profile. Soil & Water Research, 2014, vol. 9(4), pp. 192–200. DOI: 10.17221/104/2013-SWR
Kalinina O., Goryachkin S.V., Karavaeva N.A., Lyuri D.I., Giani L. Dynamics of Carbon Pools in Post-Agrogenic Sandy Soils of Southern Taiga of Russia. Carbon Balance and Management, 2010, vol. 5, art. 1. DOI: 10.1186/1750-0680-5-1
Kalinina О., Goryachkin S.V., Karavaeva N.A., Lyuri D.I., Najdenko L., Giani L. Self- Restoration of Post-Agrogenic Sandy Soils in the Southern Taiga of Russia: Soil Development, Nutrient Status, and Carbon Dynamics. Geoderma, 2009, vol. 152, iss. 1-2, pp. 35–42. DOI: 10.1016/j.geoderma.2009.05.014
Kazlauskaite-Jadzevice A., Tripolskaja L., Volungevicius J., Baksiene E. Impact of Land Use Change on Organic Carbon Sequestration in Arenosol. Agricultural and Food Science, 2019, vol. 28, no. 1, pp. 9–17. DOI: 10.23986/afsci.69641
Li D., Niu S., Luo Y. Global Patterns of the Dynamics of Soil Carbon and Nitrogen Stocks Following Afforestation: A Meta-Analysis. New Phytologist, 2012, vol. 195, iss. 1, pp. 172–181. DOI: 10.1111/j.1469-8137.2012.04150.x
Paul K.I., Polglase P.J., Nyakuengama J.G., Khanna P.K. Change in Soil Carbon Following Afforestation. Forest Ecology and Management, 2002, vol. 168, iss. 1-3, pp. 241–257. DOI: 10.1016/S0378-1127(01)00740-X
Robyn L. Soil Carbon Accumulation during Temperate Forest Succession o Abandoned Low Productivity Agricultural Lands. Ecosystems, 2010, vol. 13, no. 6, pp. 795–812.
Vesterdal L., Rosenqvist L., Van Der Salm C., Hansen K., Groenenberg B.-J., Johansson M.-B. Carbon Sequestration in Soil and Biomass Following Afforestation: Experiences from Oak and Norway Spruce Chronosequences in Denmark, Sweden and the Netherlands. Environmental Effects of Afforestation in Norht-Western Europe. Ed. by G.W. Heil, B. Muys, K. Hansen. Dordrecht, Springer, 2007, pp. 19–51. DOI: 10.1007/1-4020-4568-9_2
Xiang Y., Cheng M., Huang Y., An S., Darboux F. Changes in Soil Microbial Community and Its Effect on Carbon Sequestration Following Afforestation on the Loess Plateau, China. International Journal of Environmental Research and Public Health, 2017, vol. 14, iss. 8, art. 948. DOI: 10.3390/ijerph14080948
Zhiyanski M., Glushkova M., Ferezliev A., Menichetti L., Leifeld J. Carbon Storage and Soil Property Changes Following Afforestation in Mountain Ecosystems of the Western Rhodopes, Bulgaria. iForest – Biogeosciences and Forestry, 2016, vol. 9, iss. 4, pp. 626–634. DOI: 10.3832/ifor1866-008