Динамика запасов углерода при формировании лесов на постагрогенных землях
DOI:
https://doi.org/10.37482/0536-1036-2021-1-46-59Ключевые слова:
залежи, постагрогенные леса, хроноряд, запасы углерода, компоненты биогеоценоза, почва, древостой, лесная подстилкаАннотация
На примере подобранного хроноряда залежей (4 пробные площади с разной длительностью отчуждения: 16 лет, 25 лет, 63 года и 130 лет) в Каргопольском районе Архангельской области (средняя подзона тайги, остаточно-карбонатные почвы) проведены расчеты запасов углерода в различных компонентах биогеоценоза (почва, живой напочвенный покров, лесная подстилка, подрост, подлесок и древостой). Дана оценка структуры запасов углерода формирующихся насаждений и ее изменения с возрастом залежи. Определено, что в процессе сукцессии при облесении пашен происходит закономерное увеличение запасов углерода и его перераспределение между почвой и формирующимся фитоценозом. В насаждениях на молодых залежах более 86 % запаса углерода представлено углеродом пахотного горизонта почвы. В ходе зарастания залежи лесной растительностью доля этого пула уменьшается и уже в средневозрастном 63-летнем лесу составляет 22 %, а в спелом 130-летнем – всего 7,6 %. В средневозрастном насаждении в структуре общего запаса углерода доля древостоя достигает 69 %, а в спелом 130-летнем – уже 90 %. В насаждениях на молодых залежах структура главных компонентов биогеоценоза (почвенный углерод: углерод напочвенного покрова : углерод древесного яруса) характеризуется соотношением 9:1:0, тогда как в насаждениях на старых залежах 63-летнего и 130-летнего возраста – 2:0:8 и 1:0:9 соответственно. Для подроста и подлеска изучаемого хроноряда характерны небольшие доли углерода, не имеющие существенного значения в углеродном пуле экосистемы. Лесная подстилка в формирующихся лесных насаждениях вносит весомый вклад в структуру углерода биогеоценоза, хотя в общем пуле углерод биогеоценоза составляет 3…4 % и не способствует увеличению запасов углерода в почве. В системе «почва – лесная подстилка – живой напочвенный покров» доля углерода почвы с увеличением возраста насаждения снижается от 91 до 76…77 %, а доля формирующейся подстилки в средневозрастном и спелом лесу – 16 и 20 % соответственно. В насаждениях на молодых залежах это соотношение составляет 9:0:1, тогда как на старых – 8:2:0. Оставление пахотных земель на остаточно-карбонатных почвах под самозарастание лесной растительностью и формирование на них лесных насаждений в подзоне средней тайги приведут к постепенному снижению углеродного пула в почве, но будут способствовать секвенированию углерода в фитомассе многолетней древесной растительности и в лесной подстилке. Эти два компонента биогеоценоза будут служить депо секвенированного углерода, поддерживая биологический круговорот веществ в насаждении.
Для цитирования: Наквасина Е.Н., Шумилова Ю.Н. Динамика запасов углерода при формировании лесов на постагрогенных землях // Изв. вузов. Лесн. журн. 2021. № 1. С. 46–59. DOI: 10.37482/0536-1036-2021-1-46-59
Скачивания
Библиографические ссылки
Аккумуляция углерода в лесных почвах и сукцессионный статус лесов / под ред. Н.В. Лукиной; ФГБУН , Центр по проблемам экологии и продуктивности лесов. М.: Т-во науч. изд. КМК , 2018. 232 с. [Carbon Accumulation in Forest Soils and Forest Succession Status. Ed. by N.V. Lukina. Moscow, KMK Publ., 2018. 232 p.].
Бобкова К.С., Машика А.В., Смагин А.В. Динамика содержания углерода органического вещества в среднетаежных ельниках на автоморфных почвах. СПб.: Наука, 2014. 270 с. [Bobkova K.S., Mashika A.V., Smagin A.V. Dynamics of Carbon Organic Matter Content of Spruce Forests in Middle Taiga Growing on Automorphic Soils. Saint Petersburg, Nauka Publ., 2014. 270 р.].
Гиниятуллин К.Г., Шинкарев А.А., Фазылова А.Г., Кузьмин К.И., Шинкарев А.А. (мл.) Пространственная неоднородность вторичной аккумуляции гумуса в старопахот-ных горизонтах залежных светло-серых лесных почв // Учен. зап. Казан. гос. ун-та. Сер.: Естеств. науки. 2012. Т. 154, кн. 4. С. 61–70. [Giniyatullin K.G., Shinkarev A.A., Fazylova A.G., Kuzmina K.I., Shinkarev A.A. (Jr.) Spatial Heterogeneity of Secondary Humus-Accumulation in Old-Arable Horizons of Fallow Light-Grey Forest Soils. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki [Proceedings of Kazan University. Natural Sciences Series], 2012, vol. 154, book 4, pp. 61–70].
Голубева Л.В., Наквасина Е.Н. Трансформация постагрогенных земель на карбонатных отложениях: моногр. Архангельск: Кира, 2017. 152 с. [Golubeva L.V., Nakvasina E.N. Transformation of Postagrogenic Lands on Carbonate Sediments. Arkhangelsk, Kira Publ., 2017. 152 p.].
Замолодчиков Д.Г. Системы оценки и прогноза запасов углерода в лесных экосистемах // Устойчивое лесопользование. 2011. № 4(29). С. 15–22. [Zamolodchikov D.G.Systems for Estimating and Forecasting Carbon Stocks in Forest Ecosystems. Ustoychivoye lesopol’zovaniye, 2011, no. 4(29), pp. 15–22].
Замолодчиков Д.Г., Честных О.В., Уткин А.И. Пулы и потоки углерода лесов Дальневосточного федерального округа // Хвойные бореальной зоны. 2006. Т. XXIII, № 3. С. 21–30. [Zamolodchikov D.G., Chestnykh O.V., Utkin A.I. Pools and Flows of Carbon in the Forests of the Far-Eastern Federal District. Hvojnye boreal’noj zony [Conifers of the boreal area], 2006, vol. 23, no. 3, pp. 21–30].
Иванов А.Л., Столбовой В.С. Инициатива «4-промилле» – новый глобальный вызов для почв России // Бюл. Почв. инст-та им. В.В. Докучаева. 2019. Вып. 98. С. 185–202. [Ivanov A.L., Stolbovoy V.S. The Initiative “4 per mille” – a New Global Challenge for the Soils of Russia. Byulleten Pochvennogo instituta imeni V.V. Dokuchaeva [Dokuchaev Soil Bulletin], 2019, iss. 98, pp. 185–202]. DOI: 10.19047/0136-1694-2019-98-185-202.
Курганова И.Н., Лопес де Гереню В.О., Мостовая А.С., Телеснина В.М. Влияние процессов естественного лесовосстановления на углеродный статус и микробиологическую активность постагрогенных почв в различных лесорастительных зонах европейской части России //Фундаментальные и прикладные вопросы лесного почвоведения: материалы докл. VI Всерос. науч. конф. с междунар. участием (Сыктывкар, 14–18 сент. 2015 г.). Сыктывкар: Коми НЦ УрО РАН , 2015. С. 152–154. [Kurganova I.N., Lopes de Uerenu V.O., Mostovaya A.S., Telesnina V.M. Influence of Natural Reforestation Processes on Carbon Status and Microbiological Activity of Postagrogenic Soils in Various Forest Growing Zones of the European Part of Russia. Fundamental and Applied Aspects of Forest Soil Science: Proceedings of the VI All-Russian Scientific Conference on Forest Soil Science with International Participation (Syktyvkar, Russia, September 14–18, 2015). Syktyvkar, Komi Science Centre UB RAS, 2015, pp. 152–154].
Люри Д.И., Горячкин С.В., Караваева Н.А., Денисенко Е.А., Нефедова Т.Г. Динамика сельскохозяйственных земель России в XX веке и постагрогенное восстановление растительности и почв. М.: ГЕОС , 2010. 416 с. [Lyuri D.I., Goryachkin S.V., Karavaeva N.А., Denisenko E.A., Nefedova T.G. Dynamics of Agricultural Lands of Russia in the 20th century and Postagrogenic Restoration of Soils and Vegetation. Moscow, GEOS Publ., 2010. 416 p.].
Методика информационно-аналитической оценки бюджета углерода лесных насаждений на локальном уровне // ЦЭПЛ РАН .: Режим доступа: http://old.cepl.rssi.ru/carbondoc/local/local1.doc (дата обращения: 07.10.19). [Methodology of Information and Analytical Assessment of the Carbon Budget of Forest Plantations at the Local Level. CEPF RAS].
Рыжова И.М., Ерохова А.А., Подвезенная М.А. Изменение запасов углерода в постагрогенных экосистемах в результате естественного восстановления лесов в Костромской области // Лесоведение. 2015. № 4. С. 307–317. [Ryzhova I.M., Erokhova A.A., Podvezennaya M.A. Alterations of the Carbon Storages in Postagrogenic Ecosystems Due to Natural Reforestation in Kostroma Oblast. Lesovedenie [Russian Journal of Forest Science], 2015, no. 4, pp. 307–317].
Телеснина В.М., Владыченский А.С. Особенности биологического круговорота в постагрогенных экосистемах южной тайги //Экологические функции лесных почв в естественных и нарушенных ландшафтах: памяти В.В. Никонова: материалы докл. IV Всерос. науч. конф. с междунар. участием (Апатиты, 12–16 сент. 2011 г.). Апатиты: Кольский НЦ , 2011. Ч. 1. С. 130–134. [Telesnina V.M., Vladychenskiy A.S. Features of Biological Cycle in Postagrogenic Ecosystems of Southern Taiga. Ecological Functions of Forest Soils in Natural and Damaged Landscapes: Proceedings of the 4th All-Russian Scientific Conference with International Participation in memory of V.V. Nikonov (Apatity, September 12–16, 2011). Apatity, KSC, 2011, part 1, pp. 130–134].
Титлянова А.А. Биологический круговорот углерода в травянистых биогеоценозах. Новосибирск: Наука, 1977. 219 с. [Titlyanova A.A. Biological Cycle of Carbon in Grass Biogeocenoses. Novosibirsk, Nauka Publ., 1977. 219 p.].
Уткин А.И., Замолодчиков Д.Г., Честных О.В. Пулы и потоки углерода в лесном фонде Архангельской области // Академическая наука и ее роль в развитии производительных сил в северных регионах России: материалы докл. Всерос. конф. с междунар. участием (г. Архангельск, 19–22 июня 2006 г.). Архангельск, 2006. С. 1–4. [Utkin A.I., Zamolodchikov D.G., Chestnykh O.V. Pools and Flows of Carbon in the Forests of the Arkhangelsk Region. Academic Science and Its Role in the Development of Productive Forces in the Northern Regions of Russia: Proceedings of the All-Russian Conference with International Participation. Arkhangelsk, 2006, pp. 1–4].
Уткин А.И., Замолодчиков Д.Г., Грабовский В.И., Курц В.А. Влияние объемов на углеродный баланс лесов России: прогнозный анализ по модели CBM-CFS3 // Тр. СПбНИИ ЛХ. 2014. № 1. С. 5–18. [Zamolodchikov D.G., Grabowsky V.I., Kurz W.A. Influence of Forest Harvest Rates on the Carbon Balance of Russian Forests: Projective Analysis Using the CBM-CFS3 Model. Trudy Sankt-Peterburgskogo nauchnoissledovatel’skogo instituta lesnogo khozyaystva [Proceedings of the Saint Petersburg Forestry Research Institute], 2014, no. 1, pр. 5–18].
Уткин А.И., Замолодчиков Д.Г., Гульбе Т.А., Гульбе Я.И. Аллометрические уравнения для фитомассы по данным деревьев сосны, ели, березы и осины в европейской части России // Лесоведение. 1996. № 6. С. 36–46. [Utkin A.I., Zamolodchikov D.G., Gulbe T.A., Gulbe Ya.I. Allometric Equations for Phytomass Based on the Data on Pine, Spruce, Birch and Aspen Trees in European Russia. Lesovedenie [Russian Journal of Forest Science], 1996, no. 6, pp. 36–46].
Чернова О.В., Рыжова И.М., Подвезенная М.А. Изменение величины и структуры запасов углерода в регионах южной тайги и лесостепи Европейской России за исторический период // Живые и биокосные системы. 2017. № 19. Режим доступа: http://www.jbks.ru/archive/issue-19/article-2 (дата обращения: 01.04.19). [Chernova O.V., Ryzhova I.M., Podvezennaya М.А. Changes of Organic Carbon Pools in the Southern Taiga and Forest-Steppe of European Russia during the Historical Period. Zhivyye i biokosnyye sistemy, 2017, no. 19].
Честных О.В., Замолодчиков Д.Г., Уткин А.И. Общие запасы биологического углерода и азота в почвах лесного фонда России // Лесоведение. 2004. № 4. С. 30–42. [Chestnykh O.V., Zamolodchikov D.G., Utkin A.I. Reserves of Biological Carbon and Nitrogen in Soils of Russian Forest Fund. Lesovedenie [Russian Journal of Forest Science], 2004, no. 4, pp. 30–42].
Щепащенко Д.Г., Мухортова Л.В., Швиденко А.З., Ведрова Э.В. Запасы органического углерода в почвах России // Почвоведение. 2013. № 2. С. 123–132. [Schepaschenko D.G., Shvidenko A.Z., Mukhortova L.V., Vedrova E.F. The Pool of Organic Carbon in the Soils of Russia. Pochvovedeniye [Eurasian Soil Science], 2013, no. 2, pp. 123–132]. DOI: 10.7868/S0032180X13020123
Яшин И.М., Кашанский А.Д. Ландшафтно-геохимическая диагностика и генезис почв Европейского Севера России: моногр. М.: РГАУ –МС ХА им. К.А. Тимирязева, 2015. 202 с. [Yashin I.M., Kashanskiy A.D. Landscape-Geochemical Diagnostics and Genesis of Soils of the European North of Russia: Monograph. Moscow, RSAU – MTAA Publ., 2015. 202 p.].
Chang R., Jin T., Lü Y., Liu G., Fu B. Soil Carbon and Nitrogen Changes Following Afforestation of Marginal Cropland across a Precipitation Gradient in Loess Plateau of China. PLoS ONE, 2014, vol. 9, iss. 1, art. e85426. DOI: 10.1371/journal.pone.0085426
Cukor J., Vacek Z., Linda R., Bílek L. Carbon Sequestration in Soil Following Afforestation of Former Agricultural Land in the Czech Republic. Central European Forestry Journal, 2017, vol. 63, iss. 2-3, pp. 97–109. DOI: 10.1515/forj-2017-0011
Enquist B.J., Niklas K.J. Global Allocation Rules for Patterns of Biomass Partitioning in Seed Plants. Science, 2002, vol. 295, iss. 5559, pp. 1517–1520. DOI: 10.1126/science.1066360
Gao Y., Tian J., Pang Y., Liu J. Soil Inorganic Carbon Sequestration Following Afforestation Is Probably Induced by Pedogenic Carbonate Formation in Northwest China. Frontiers in Plant. Science. 2017, vol. 8, art. 1282. DOI: 10.3389/fpls.2017.01282
Holubík О., Podrázský V., Vopravil J. , Khel T., Remeš J. Effect of Agricultural Lands Afforestation and Tree Species Composition on the Soil Reaction, Total Organic Carbon and Nitrogen Content in the Uppermost Mineral Soil Profile. Soil & Water Research, 2014, vol. 9(4), pp. 192–200. DOI: 10.17221/104/2013-SWR
Kalinina O., Goryachkin S.V., Karavaeva N.A., Lyuri D.I., Giani L. Dynamics of Carbon Pools in Post-Agrogenic Sandy Soils of Southern Taiga of Russia. Carbon Balance and Management, 2010, vol. 5, art. 1. DOI: 10.1186/1750-0680-5-1
Kalinina О., Goryachkin S.V., Karavaeva N.A., Lyuri D.I., Najdenko L., Giani L. Self- Restoration of Post-Agrogenic Sandy Soils in the Southern Taiga of Russia: Soil Development, Nutrient Status, and Carbon Dynamics. Geoderma, 2009, vol. 152, iss. 1-2, pp. 35–42. DOI: 10.1016/j.geoderma.2009.05.014
Kazlauskaite-Jadzevice A., Tripolskaja L., Volungevicius J., Baksiene E. Impact of Land Use Change on Organic Carbon Sequestration in Arenosol. Agricultural and Food Science, 2019, vol. 28, no. 1, pp. 9–17. DOI: 10.23986/afsci.69641
Li D., Niu S., Luo Y. Global Patterns of the Dynamics of Soil Carbon and Nitrogen Stocks Following Afforestation: A Meta-Analysis. New Phytologist, 2012, vol. 195, iss. 1, pp. 172–181. DOI: 10.1111/j.1469-8137.2012.04150.x
Paul K.I., Polglase P.J., Nyakuengama J.G., Khanna P.K. Change in Soil Carbon Following Afforestation. Forest Ecology and Management, 2002, vol. 168, iss. 1-3, pp. 241–257. DOI: 10.1016/S0378-1127(01)00740-X
Robyn L. Soil Carbon Accumulation during Temperate Forest Succession o Abandoned Low Productivity Agricultural Lands. Ecosystems, 2010, vol. 13, no. 6, pp. 795–812.
Vesterdal L., Rosenqvist L., Van Der Salm C., Hansen K., Groenenberg B.-J., Johansson M.-B. Carbon Sequestration in Soil and Biomass Following Afforestation: Experiences from Oak and Norway Spruce Chronosequences in Denmark, Sweden and the Netherlands. Environmental Effects of Afforestation in Norht-Western Europe. Ed. by G.W. Heil, B. Muys, K. Hansen. Dordrecht, Springer, 2007, pp. 19–51. DOI: 10.1007/1-4020-4568-9_2
Xiang Y., Cheng M., Huang Y., An S., Darboux F. Changes in Soil Microbial Community and Its Effect on Carbon Sequestration Following Afforestation on the Loess Plateau, China. International Journal of Environmental Research and Public Health, 2017, vol. 14, iss. 8, art. 948. DOI: 10.3390/ijerph14080948
Zhiyanski M., Glushkova M., Ferezliev A., Menichetti L., Leifeld J. Carbon Storage and Soil Property Changes Following Afforestation in Mountain Ecosystems of the Western Rhodopes, Bulgaria. iForest – Biogeosciences and Forestry, 2016, vol. 9, iss. 4, pp. 626–634. DOI: 10.3832/ifor1866-008