Features of Solubilizing Effect of Amphiphilic Compounds during Pulp Deresination

Authors

DOI:

https://doi.org/10.37482/0536-1036-2021-1-180-191

Keywords:

solubilization, pulp deresination, lipase, surfactants

Abstract

The necessity to improve the existing technology of pulp deresination, in particular, to reduce the surfactants consumption and decrease the environmental load, led to a combination of existing methods of resin removal with the use of enzymatic treatment. The basis of the pulp deresination mechanism by amphiphilic compounds is the solubilization of resinous substances. Thus, the establishment of the patterns of this process and its control predetermines the success of implementation of the selected technology. The features of solubilization of triolein and rosin in the lipase-based systems of individual nonionic surfactants, the enzyme, as well as their synergistic mixtures with the determination of solubilization capacities of micelles and the possible mechanism of solubilizate incorporation into them were studied using spectrophotometry, pH measurement and dynamic light scattering. It was found that synthamide-5 has a low deresination capability in spite of the high solubilization capacity of its micelles and the production of aggregates with a hydrodynamic radius up to 98 nm after diffusion of rosin into them. It is likely that compact micellar structures with a developed surface, which are implemented in mixed systems of amphiphilic compounds, including the presence of synthamide-5 in them, are more preferable for successful deresination of pulp semi-finished products. The addition of lipase leads to an increased solubilization capacity of mixed aggregates and an increase in the intensity of solubilizate molecules incorporation. Thus, depending on the nature of the amphiphilic compound, there is a different mechanism for solubilizate incorporation into micelles. Determination of the size of associates in mixed systems showed the absence of enzyme denaturation, which predicts the successful application of such cooperative systems for deresination of fiber semi-finished products. It is found that the solubilizing capability of the studied systems on resin modeling objects correlates with their deresination capability with respect to different fiber semi-finished products.
For citation: Smit R.A., Demiantseva E.Yu., Andranovich O.S., Filippov A.P. Features of Solubilizing Effect of Amphiphilic Compounds during Pulp Deresination. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 1, pp. 180–191. DOI: 10.37482/0536-1036-2021-1-180-191
Acknowledgements: The authors are grateful to V.V. Zakharov, leading engineer of Laboratory No. 5 of the Institute of Macromolecular Compounds of the Russian Academy of Sciences (IMC RAS), for his assistance in the study of the enzyme preparation by electrophoresis in polyacrylamide gel.

Downloads

Download data is not yet available.

Author Biographies

Р. А. Смит, Saint-Petersburg State University of Industrial Technologies and Design

Postgraduate Student; ResearcherID: O-2661-2019

Е. Ю. Демьянцева, Saint-Petersburg State University of Industrial Technologies and Design

Candidate of Chemistry, Assoc. Prof.; ResearcherID: P-5165-2019

О. С. Андранович, Saint-Petersburg State University of Industrial Technologies and Design

Postgraduate Student; ResearcherID: P-5570-2019

А. П. Филиппов, Saint-Petersburg State University of Industrial Technologies and Design; Institute of Macromolecular Compounds of the Russian Academy of Sciences

Doctor of Physics and Mathematics; ResearcherID: A-9157-2013

References

Акимова Г.С., Курзин А.В., Павлова О.С., Евдокимов А.Н. Химия и технология компонентов сульфатного мыла. СПб.: СПбГТУРП, 2008. 104 с. [Akimova G.S., Kurzin A.V., Pavlova O.S., Evdokimov A.N. Chemistry and Technology of Sulphate Soap Components. Saint Petersburg, HSTE Publ., 2008. 104 p.].

Беленова А.С. Исследование закономерностей гидролиза триглицеридов свободной и иммобилизованной липазой: автореф. дис. ... канд. биол. наук. Воронеж, 2011. 24 с. [Belenova A.S. Study of Triglyceride Hydrolysis Patterns by Free and Immobilized Lipase: Cand. Biol. Sci. Diss. Abs. Voronezh, 2011. 24 p.].

Болотова К.С., Новожилов Е.В. Применение ферментных технологий для повышения экологической безопасности целлюлозно-бумажного производства // Химия растит. сырья. 2015. № 3. С. 5–23. [Bolotova K.S., Novozhilov E.V. Enzymes Application for Improving Ecological Safety of Pulp and Paper Industry. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2015, no. 3, pp. 5–23]. DOI: 10.14258/jcprm.201503575

Волков В.А., Талмуд С.Л. Исследование солюбилизации канифоли в водных рас- творах некоторых поверхностно-активных веществ // Коллоид. журн. 1966. Т. 28, № 3. С. 343–349. [Volkov V.A., Talmud S.L. Study of Rosin Solubilization in Aqueous Solutions of Some Surfactants. Kolloidnyj Zhurnal [Colloid Journal], 1966, vol. 28, no. 3, pp. 343–349].

Горохова И.В. Изучение каталитических свойств липаз, иммобилизованных в гидрофобных средах: дис. ... канд. хим. наук. М., 2003. 134 с. [Gorokhova I.V. Study of the Catalytic Properties of Lipases Immobilized in Hydrophobic Media: Cand. Chem. Sci. Diss. Moscow, 2003. 134 p.].

ГОСТ 6841–77. Целлюлоза. Метод определения смол и жиров. Дата введ. 1979-01-01. М.: Изд-во стандартов, 1998. 6 с. [State Standard. GOST 6841–77. Cellulose. Method for Determination of Pitch and Fat. Moscow, Izdatel’stvo standartov, 1998. 6 p.].

ГОСТ 19113–84. Канифоль сосновая. Технические условия. Дата введ. 1986-01-01. М.: Изд-во стандартов, 1999. 5 с. [State Standard. GOST 19113–84. Pine Rosin. Specifications. Moscow, Izdatel’stvo standartov, 1999. 5 p.].

Емельянова М.В., Чухчин Д.Г., Новожилов Е.В. Перспективы использования липазы в целлюлозно-бумажном производстве // Изв. вузов. Лесн. журн. 2007. № 1. С. 111–119. [Emeljanova M.V., Chuhchin D.G., Nоvozhilov E.V. Prospects of Using Lipase in Pulp-and-Paper Production. Lesnoy Zhurnal [Russian Forestry Journal], 2007, no. 1, pp. 111–119]. URL: http://lesnoizhurnal.ru/upload/iblock/38f/38f6a443ad5e3e8c17862ed53АК968e2bb646.pdf

Задымова Н.М. Жидкофазные дисперсные системы как основа микрогетерогенных полимерных матриц для трансдермальной доставки лекарств: дис. ... д-ра хим. наук. М., 2014. 273 с. [Zadymova N.M. Liquid-Phase Disperse Systems as a Basis of Microheterogeneous Polymeric Matrices for Transdermal Drug Delivery: Dr. Chem. Sci. Diss. Moscow, 2014. 273 p.] URL: http://www.chem.msu.ru/rus/theses/2014-01-21-zadymova/fulltext.pdf

Новожилов Е.В. Пошина Д.Н. Биотехнологии в производстве целлюлозы для химической переработки (обзор) // Химия растит. сырья. 2011. № 3. С. 15–32. [Novozhilov E.V., Poshina D.N. Biotechnology in Dissolving Pulp Production. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2011, no. 3, pp. 15–32].

Печурина Т.Б., Миловидова Л.А., Комарова Г.В., Комаров В.И. Влияние добавок диспергантов на изменение состояния смолы и содержание экстрактивных веществ в лиственной сульфатной целлюлозе // Изв. вузов. Лесн. журн. 2003. № 2-3. С. 68–75. [Pechurina T.B., Milovidova L.A., Komarova G.V., Komarov V.I. Influence of Dispergant Additives on Resin State Changing and Extractives Content in Sulphate Softwood Pulp. Lesnoy Zhurnal [Russian Forestry Journal], 2003, no. 2-3, pp. 68–75]. URL: http://lesnoizhurnal.ru/upload/iblock/8e6/8e6ebe5a410ec2ec1c64f589cda92dce.pdf

Русанов А.И., Щёкин А.К. Мицеллообразование в растворах поверхностно-активных веществ: моногр. СПб.: Лань, 2016. 612 с. [Rusanov A.I., Shchekin A.K. Micellization in Solutions of Surfactants. Saint Petersburg, Lan’ Publ., 2016. 612 p.].

Смит Р.А., Демьянцева Е.Ю., Андранович О.С. Влияние липазы на мицеллообразующую и солюбилизирующую способность неионогенных поверхностно-активных веществ // Изв. вузов. Химия и хим. технология. 2018. Т. 61, вып. 6. С. 54–60. [Smith R.A., Demyantseva E.Yu., Andranovich O.S. Impact of Lipase on Micelle Formation and Solubilization Abilities of Non-Ionic Surfactants. Izvestiya vysshikh uchebnykh zavedeniy. Seriya: khimiya i khimicheskaya tekhnologiya [Russian Journal of Chemistry and Chemical Technology], 2018, vol. 61, iss. 6, pp. 54–60]. DOI: 10.6060/tcct.20186106.5696

Смит Р.А., Демьянцева Е.Ю., Андранович О.С. Анализ состояния смолы при обессмоливании сульфатной лиственной целлюлозы // Изв. вузов. Лесн. журн. 2019. № 4. С. 168–178. [Smith R.A., Demyantseva E.Yu., Andranovich O.S. Analysis of the Resin Forms in the Process of the Short Fiber Sulphate Cellulose Deresination. Lesnoy Zhurnal [Russian Forestry Journal], 2019, no. 4, pp. 168–178]. DOI: 10.17238/issn0536-1036.2019.4.168, URL: http://lesnoizhurnal.ru/upload/iblock/a44/168_178.pdf

Хакимова Ф.Х., Ковтун Т.Н., Хакимов Р.Р. Обессмоливание целлюлозы поверхностно-активными веществами на стадии бисульфитной варки // Изв. вузов. Лесн. журн. 2008. № 5. С. 108–113. [Khakimova F.Kh., Kovtun T.N., Khakimov R.R. Pulp Deresination by Surfactants at Bisulfite Pulping Stage. Lesnoy Zhurnal [Russian Forestry Journal], 2008, no. 5, pp. 108–113]. URL: http://lesnoizhurnal.ru/upload/iblock/f63/f63241d806cb31f-2b65c34d595a942a7.pdf

Delorme V., Dhouib R., Canaan S., Fotiadu F., Carrière F., Cavalier J.-F. Effects of Surfactants on Lipase Structure, Activity, and Inhibition. Pharmaceutical Research, 2011, vol. 28, pp. 1831–1842. DOI: 10.1007/s11095-010-0362-9

Holmberg K. Interactions between Surfactants and Hydrolytic Enzymes. Colloids and Surfaces B: Biointerfaces, 2018, vol. 168, pp. 169–177. DOI: 10.1016/j.colsurfb.2017.12.002

Hubbe M.A., Rojas O.J., Venditti R.A. Control of Tacky Deposits on Paper Machines – A Review. Nordic Pulp & Paper Research Journal, 2006, vol. 21, iss. 2, pp. 154–171. DOI: 10.3183/npprj-2006-21-02-p154-171

Jelińska A., Zagożdżon A., Górecki M., Wisniewska A., Frelek J., Holyst R. Denaturation of Proteins by Surfactants Studied by the Taylor Dispersion Analysis. PLoS ONE, 2017, vol. 12(4), art. e0175838. DOI: 10.1371/journal.pone.0175838

Kamil M., Siddiqui H. Experimental Study of Surface and Solution Properties of Gemini-Conventional Surfactant Mixtures on Solubilization of Polycyclic Aromatic Hydrocarbon. Modeling and Numerical Simulation of Material Science, 2013, vol. 3, no. 4B, pp. 17–25. DOI: 10.4236/mnsms.2013.34B004

Kratochvíl P. Classical Light Scattering from Polymer Solution. Amsterdam, Elsevier, 1987. 334 p.

Magalhães S.S., Alves L., Sebastião M., Medronho B., Almeida Z.L., Faria T.Q., Brito R.M.M., Moreno M.J., Antunes F.E. Effect of Ethyleneoxide Groups of Anionic Surfactants on Lipase Activity. Biotechnology Process, 2016, vol. 32, iss. 5, pp. 1276–1282. DOI: 10.1002/btpr.2310

McBain M.E.L., Hutchinson E. Solubilization and Related Phenomena. New York, Academic Press, 1955. 257 p.

Mittal K.L. Micellization, Solubilization, and Microemulsions. Vol. 2. New York, Plenum Press, 1977. 460 p. DOI: 10.1007/978-1-4613-4157-4

Otzen D. Protein–Surfactant Interactions: A Tale of Many States. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 2011, vol. 1814, iss. 5, pp. 562–591. DOI: 10.1016/j.bbapap.2011.03.003

Reis P., Malmsten M., Nydén M., Folmer B., Holmberg K. Interactions between Lipases and Amphiphiles at Interfaces. Journal of Surfactants and Detergents, 2019, vol. 22, iss. 5, pp. 1047–1058. DOI: 10.1002/jsde.12254

Schärtl W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions. Berlin, Springer, 2007. 191 p. DOI: 10.1007/978-3-540-71951-9

Published

2021-02-26

How to Cite

Смит, Р. А., Е. Ю. Демьянцева, О. С. Андранович, and А. П. Филиппов. “Features of Solubilizing Effect of Amphiphilic Compounds During Pulp Deresination”. Lesnoy Zhurnal (Forestry Journal), no. 1, Feb. 2021, pp. 180-91, doi:10.37482/0536-1036-2021-1-180-191.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES