Study of Kraft Lignin Nitration with Acetyl Nitrate in the Presence of Aprotic Solvents

Authors

DOI:

https://doi.org/10.37482/0536-1036-2022-2-193-206

Keywords:

kraft lignin, sulfate lignin, nitration, acetyl nitrate, tetrahydrofuran, dimethyl sulfoxide, dioxane, electron spectroscopy, aprotic solvents

Abstract

A method for homogeneous nitration of kraft lignin (KL), which consists in its treatment with acetyl nitrate in 1,4-dioxane, tetrahydrofuran, or dimethyl sulfoxide, has been proposed. The effects of reaction time and consumption of acetyl nitrate on KL nitration were studied. A new absorption band with a maximum at 430 nm due to aromatic nitro groups appears in the ionization spectra upon KL nitration. The intensity of this absorption band rises with an increase in consumption of acetyl nitrate and reaction time. At the same time, the intensities of two absorption bands of phenolic hydroxyl groups in the range of 230–300 nm decrease. At the highest acetyl nitrate consumption of 71 mmol / g KL, phenolic absorption bands are practically absent in the ionization spectrum of the products, which, apparently, can be explained by KL acetylation. To analyze the ionization spectra, they were deconvolved. The spectra of reaction products can be described by 3–5 Gaussians with an error of no more than 5 %. The proposed method makes it possible to synthesize the KL nitrated with nitrogen content of up to 2.4 %. Depending on the aprotic solvent used, the kinetic curves of nitration are different. A specific feature of KL nitration in tetrahydrofuran is the presence of an induction period, the duration of which decreases with increasing temperature and which practically disappears at temperatures above 30 °C. The introduction of small additions of nitrites into the reaction mixture makes it possible to reduce the induction period. The KL nitration in dimethyl sulfoxide occurs at a low rate that also increases significantly in the presence of sodium nitrite.
For citation: Khabarov Yu.G., Garkotin A.Yu., Veshnyakov V.A. Study of Kraft Lignin Nitration with Acetyl Nitrate in the Presence of Aprotic Solvents. Lesnoy Zhurnal [Russian Forestry Journal], 2022, no. 2, pp. 193–206. DOI: 10.37482/0536-1036-2022-2-193-206
Acknowledgements: The research was carried out with the support of the Shared Use of Equipment Center “Arktika” of the Northern (Arctic) Federal University (Arkhangelsk).

Downloads

Download data is not yet available.

Author Biographies

Yuriy G. Khabarov, Northern (Arctic) Federal University named after M.V. Lomonosov

Doctor of Chemistry, Prof.; ResearcherID: P-1802-2015

Anton Yu. Garkotin, Northern (Arctic) Federal University named after M.V. Lomonosov

Postgraduate Student; ResearcherID: AAH-6508-2020

Viacheslav A. Veshnyakov, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Chemistry; ResearcherID: E-3882-2017

References

Беллами Л. Инфракрасные спектры молекул. М.: Иностр. лит., 1957. 444 с. Bellamy L.J. The Infra-red Spectra of Complex Molecules. Moscow, Inostrannaya literature Publ., 1957. 444 p.

Хабаров Ю.Г., Бабкин И.М., Вешняков В.А. Синтез магнитоактивного соединения на основе сульфата железа(II) // Журн. приклад. химии. 2012. Т. 85, вып. 6. С. 900–905. Khabarov Yu.G., Babkin I.M., Veshnyakov V.A. The Influence of the Nitrosation Conditions of Lignosulfonates on the Synthesis of Magnetoactive Compound. Zhurnal Prikladnoy Khimii [Russian Journal of Applied Chemistry], 2012, vol. 85, iss. 6, pp. 900–905.

Хабаров Ю.Г., Лахманов Д.Е., Косяков Д.С., Ульяновский Н.В. Синтез 2,4-динитрофенола // Журн. приклад. химии. 2012. Т. 85, № 10. С. 1644–1647. Khabarov Yu.G., Lakhmanov D.E., Kosyakov D.S., Ul’yanovskii N.V. Synthesis of 2,4-Dinitrophenol. Zhurnal Prikladnoy Khimii [Russian Journal of Applied Chemistry], 2012, vol. 85, no. 10, pp. 1644–1647.

Хабаров Ю.Г., Кузяков Н.Ю., Вешняков В.А., Комарова Г.В., Гаркотин А.Ю. Исследование нитрования сульфатного лигнина в гомогенных условиях с помощью электронной спектроскопии // Изв. АН. Сер.: Химическая. 2016. № 12. С. 2925–2931. Khabarov Yu.G., Kuzyakov N.Yu., Veshnyakov V.A., Komarova G.V., Garkotin A.Y. Nitration of Sulfate Lignin under Homogeneous Conditions Studied by Electron Spectroscopy. Izvestiya Akademii Nauk, Seriya Khimicheskaya [Russian Chemical Bulletin], 2016, no. 12, pp. 2925–2931.

Шорыгина Н.Н., Резников В.М., Елкин В.В. Реакционная способность лигнина. М.: Наука, 1976. 368 с. Shorygina N.N., Reznikov V.M., Elkin V.V. The Reactivity of Lignin. Moscow, Nauka Publ., 1976. 368 p.

Al-Obaidi U., Moodie R.B. The Nitrous Acid-Catalysed Nitration of Phenol. Journal of the Chemical Society, Perkin Transactions 2, 1985, iss. 3, pp. 467–472. DOI: https://doi.org/10.1039/p29850000467

Andersson L., Samuelson O. Demethylation and Nitration of Lignin. Journal of Wood Chemistry and Technology, 1985, vol. 5, iss. 3, pp. 363–378. DOI: https://doi.org/10.1080/02773818508085199

Bak R.R., Smallridge A.J. A Fast and Mild Method for the Nitration of Aromatic Rings. Tetrahedron Letters, 2001, vol. 42, iss. 38, pp. 6767–6769. DOI: https://doi.org/10.1016/S0040-4039(01)01378-8

Ballini R., Barboni L., Giarlo G. The First Conversion of Primary Alkyl Halides to Nitroalkanes under Aqueous Medium. The Journal of Organic Chemistry, 2004, vol. 69, iss. 20, pp. 6907–6908. DOI: https://doi.org/10.1021/jo049048b

Ballini R., Barboni L., Palmieria A. Improved Chemoselective, Ecofriendly Conditions for the Conversion of Primary Alkyl Halides into Nitroalkanes under PEG400. Green Chemistry, 2008, vol. 10, iss. 9, pp. 1004–1006. DOI: https://doi.org/10.1039/b805985c

Cotton F.A., Wilkinson G., Murillo C.A., Bochmann M. Advanced Inorganic Chemistry. New York, Wiley, 1999. 1376 p.

Dimiev A.M., Kargin Yu.M. Sulfonation and ipso Substitution in the Course of Nitration of Aromatic Compounds in the System N2O5-SO3-H2O. Russian Journal of General Chemistry, 1996, vol. 66, no. 11, pp. 1831–1836.

Dix L.R., Moodie R.B. Nitrosation and Nitrous Acid-Catalysed Nitration of Anisole and 2,6-Dimethylanisole. Journal of the Chemical Society, Perkin Transactions 2, 1986, no. 7, pp. 1097–1101. DOI: https://doi.org/10.1039/p29860001097

Dugar A., Kumar A., Ameta R., Ameta S.C. A Green Chemical Approach for Nitration of Aromatic Compounds. Macedonian Journal of Chemistry and Chemical Engineering, 2009, vol. 28, no. 2, pp. 163–168. DOI: https://doi.org/10.20450/mjcce.2009.206

Fuchs W. Die Chemie des Lignins. Berlin, Verlag von Julius Springer, 1926. 327 S. DOI: https://doi.org/10.1007/978-3-642-91583-3

Goldschmid O. The Effect of Alkali and Strong Acid on the Ultraviolet Absorption Spectrum of Lignin and Related Compounds. Journal of the American Chemical Society, 1953, vol. 75, no. 15, pp. 3780–3783. DOI: https://doi.org/10.1021/ja01111a052

Kent J.A. Handbook of Industrial Chemistry and Biotechnology. New York, Springer, 2012. 1562 p. DOI: https://doi.org/10.1007/978-1-4614-4259-2

Khabarov Yu.G., Lakhmanov D.E. Depolymerization of Condensed Lignins under the Influence of Nitric Acid. Proceedings of the 13th European Workshop on Lignocellulosics and Pulp. Seville, Spain, 2014, pp. 459–462.

Khabarov Yu.G., Patrakeev A.A., Veshnyakov V.A., Kosyakov D.S., Ul’yanovskii N.V., Garkotin A.Yu. One-Step Synthesis of Picric Acid from Phenol. Organic Preparations and Procedures International, 2017, vol. 49, no. 2, pp. 178–181. DOI: https://doi.org/10.1080/00304948.2017.1291008

Kurschner K. From Nitrolignin to Lignin. Zellstoff-Faser, 1935, vol. 32, pp. 87–93.

Lindberg O., Walding J. Reactions of Nitrated Kraft Lignin in an Alkaline Oxygen Bleaching Stage. Tappi Journal, 1987, vol. 70, no. 10, pp. 119–123.

Louw R. Acetyl Nitrate. Encyclopedia of Reagents for Organic Synthesis. Wiley, 2001. 2 p. DOI: https://doi.org/10.1002/047084289X.ra032

Luzzio F.A. The Henry Reaction: Recent Examples. Tetrahedron, 2001, vol. 57, iss. 6, pp. 915–945. DOI: https://doi.org/10.1016/S0040-4020(00)00965-0

Nowrouzi N., Mehranpour A.M., Bashiri E., Shayan Z. Aromatic Nitration under Neutral Conditions Using N-Bromosuccinimide/Silver(I) Nitrate. Tetrahedron Letters, 2012, vol. 53, iss. 36, pp. 4841–4842. DOI: https://doi.org/10.1016/j.tetlet.2012.06.126

Ohi H., Kishino M. Cleavage of Cα-Cβ Bonds of Lignin Model Compounds by Nitrite and Nitric Acid. Holzforschung, 1997, vol. 51, iss. 4, pp. 343–348. DOI: https://doi.org/10.1515/hfsg.1997.51.4.343

Olah G.A., Malhotra R., Narang S.C. Nitration. Methods and Mechanisms. Weinheim, VCH Publishers, 1989. 330 p.

Ono N. The Nitro Group in Organic Synthesis. New York, Wiley-VCH, 2001. 372 p.

Palomo C., Oiarbide M., Mielgo A. Unveiling Reliable Catalysts for the Asymmetric Nitroaldol (Henry) Reaction. Angewandte Chemie International Edition, 2004, vol. 43, iss. 41, pp. 5442–5444. DOI: https://doi.org/10.1002/anie.200460506

Patnaik P., Khoury J.N. Reaction of Phenol with Nitrite Ion: Pathways of Formation of Nitrophenols in Environmental Waters. Water Research, 2004, vol. 38, iss. 1, pp. 206–210. DOI: https://doi.org/10.1016/j.watres.2003.08.022

Prakash G.K.S., Mathew T. ipso-Nitration of Arenes. Angewandte Chemie International Edition, 2010, vol. 49, iss. 10, pp. 1726–1728. DOI: https://doi.org/10.1002/anie.200906940

Richardson B.A. Wood Preservation. New York, E. & F.N. Spon, 1993. 226 р.

Sakaue S., Sakata Y., Nishiyama Y., Ishii Y. Oxidation of Aliphatic and Aromatic Amines with Hydrogen Peroxide Catalyzed by Peroxoheteropoly Oxometalates. Chemistry Letters, 1992, vol. 21, no. 2, pp. 289–292. DOI: https://doi.org/10.1246/cl.1992.289

Tran N., Kalyvas H., Skodje K., Hayashi T., Moenne-Loccoz P., Callan P., Shearer J., Kirschenbaum L., Kim E. Phenol Nitration Induced by an {Fe(NO)2}10 Dinitrosyl Iron Complex. Journal of the American Chemical Society, 2011, vol. 133, no. 5, pp. 1184–1187. DOI: https://doi.org/10.1021/ja108313u

Vione D., Belmondo S., Carnino L. A Kinetic Study of Phenol Nitration and Nitrosation with Nitrous Acid in the Dark. Environmental Chemistry Letters, 2004, vol. 2, no. 3, pp. 135–139. DOI: https://doi.org/10.1007/s10311-004-0088-1

Zarchi M.A.K., Zarei A. Synthesis of Nitroalkanes from Alkylhalides under Mild and Nonaqueous Conditions by Using Polymer Supported Nitrites. Journal of the Chinese Chemical Society, 2005, vol. 52, iss. 2, pp. 309–311. DOI: https://doi.org/10.1002/jccs.200500047

Zhang W., Zhang J., Ren S., Liu Y. Palladium-Catalyzed Aromatic C-H Bond Nitration Using Removable Directing Groups: Regiospecific Synthesis of Substituted o-Nitrophenols from Related Phenols. The Journal of Organic Chemistry, 2014, vol. 79, no. 23, pp. 11508–11516. DOI: https://doi.org/10.1021/jo502145v

Published

2022-04-07

How to Cite

Khabarov Ю., Garkotin А., and Veshnyakov В. “Study of Kraft Lignin Nitration With Acetyl Nitrate in the Presence of Aprotic Solvents”. Lesnoy Zhurnal (Forestry Journal), no. 2, Apr. 2022, pp. 193-06, doi:10.37482/0536-1036-2022-2-193-206.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES

Most read articles by the same author(s)