Оценка степени обработки бором древесины методом пропитки
DOI:
https://doi.org/10.37482/0536-1036-2024-6-160-174Ключевые слова:
анатомические особенности, бор, удержание химикатов, плотность, проникновение, консервант, пропитка под давлением, пропитываемостьАннотация
На сегодняшний день остро стоит проблема глобального обезлесения, его темпы особенно тревожны на Шри-Ланке. Этим обусловлены исследования потенциала консервантов на основе бора для обработки древесины. Всестороннее изучение образцов выявило значительную отрицательную корреляцию между пропитываемостью древесины под давлением и общей площадью сосудов, плотностью древесины. Древесина с меньшими количеством и объемом сосудов оказалась более восприимчивой к обработке бором – и в связи с этим более пригодной для консервации. Также выявлена хотя и достаточно слабая, но положительная корреляция между пропитываемостью и общей площадью лучей древесины, указывающая на решающую роль внутренней структуры древесины в сохранности древесины в целом. В ходе исследования древесина категоризирована в зависимости от глубины проникновения бора: от полной до менее 5 мм. Полученные результаты свидетельствуют о том, что борсодержащие консерванты представляют собой перспективную и устойчивую альтернативу традиционным методам обработки древесины. Категоризация древесины по степени пропитываемости и анатомическим свойствам открывает возможность для оптимизации процессов обработки с максимальным использованием ресурсов и минимальным количеством отходов. Таким образом, в будущем древесина, обработанная бором, способна стать основой в борьбе с обезлесением, представляя собой надежную и экологически чистую альтернативу необработанной древесине. Тем самым исследование вносит значительный вклад в сохранение лесов и общее благополучие планеты, предлагая многообещающую траекторию развития устойчивого лесоводства.
Скачивания
Библиографические ссылки
Alapieti T., Mikkola R., Pasanen P., Salonen H. The Influence of Wooden Interior Materials on Indoor Environment: a Review. European Journal of Wood and Wood Products, 2020, vol. 78, pp. 617–634. https://doi.org/10.1007/s00107-020-01532-x
Ayanleye S., Udele K., Nasir V., Zhang X., Militz H. Durability and Protection of Mass Timber Structures: A Review. Journal of Building Engineering, 2022, vol. 46, art. no. 103731. https://doi.org/10.1016/j.jobe.2021.103731
Brischke C. 5 – Timber. Long-Term Performance and Durability of Masonry Structures, 2019, pp. 129–168. https://doi.org/10.1016/B978-0-08-102110-1.00005-4
Broda M. Natural Compounds for Wood Protection against Fungi – A Review. Molecules, 2020, vol. 25, no. 15, art. no. 3538. https://doi.org/10.3390/molecules25153538
Bukauskas A., Mayencourt P., Shepherd P., Sharma B., Mueller C., Walker P., Bregulla J. Whole Timber Construction: A State of the Art Review. Construction and Building Materials, 2019, vol. 213, pp. 748–769. https://doi.org/10.1016/j.conbuildmat.2019.03.043
Cappellazzi J., Konkler M.J., Sinha A., Morrell J.J. Potential for Decay in Mass Timber Elements: A Review of the Risks and Identifying Possible Solutions. Wood Material Science & Engineering, 2020, vol. 15, iss. 6, pp. 351–360. https://doi.org/10.1080/17480272.2020.1720804
Corradi M., Osofero A.I., Borri A. Repair and Reinforcement of Historic Timber Structures with Stainless Steel – A Review. Metals, 2019, vol. 9, no. 1, art. no. 106. https://doi.org/10.3390/met9010106
Crini G., Lichtfouse E., Chanet G., Morin-Crini N. Applications of Hemp in Textiles, Paper Industry, Insulation and Building Materials, Horticulture, Animal Nutrition, Food and Beverages, Nutraceuticals, Cosmetics and Hygiene, Medicine, Agrochemistry, Energy Production and Environment: A Review. Environmental Chemistry Letters, 2020, vol. 18, pp. 1451–1476. https://doi.org/10.1007/s10311-020-01029-2
Dias A.M.A., Santos P.G.G., Dias A.M.P.G., Silvestre J.D., Brito de J. Life Cycle Assessment of a Preservative Treated Wooden Deck. Wood Material Science & Engineering, 2022, vol. 17, iss. 6, pp. 502–512. https://doi.org/10.1080/17480272.2021.1897673
Duan Z., Huang Q., Zhang Q. Life Cycle Assessment of Mass Timber Construction: A Review. Building and Environment, 2022, vol. 221, art. no. 109320. https://doi.org/10.1016/j.buildenv.2022.109320
Evans P.D., Matsunaga H., Preston A.F., Kewish C.M. Wood Protection for Carbon Sequestration – A Review of Existing Approaches and Future Directions. Current Forestry Reports, 2022, vol. 8, pp. 181–198. https://doi.org/10.1007/s40725-022-00166-x
Fathi H., Nasir V., Kazemirad S. Prediction of the Mechanical Properties of Wood Using Guided Wave Propagation and Machine Learning. Construction and Building Materials, 2020, vol. 262, art. no. 120848. https://doi.org/10.1016/j.conbuildmat.2020.120848
Ghani R.S.M. A Review of Different Barriers and Additives to Reduce Boron Movement in Boron Dual Treated Wood. Progress in Organic Coatings, 2021, vol. 160, art. no. 106523. https://doi.org/10.1016/j.porgcoat.2021.106523
Järvinen J., Ilgın H.E., Karjalainen M. Wood Preservation Practices and Future Outlook: Perspectives of Experts from Finland. Forests, 2022, vol. 13, no. 7, art. no. 1044. https://doi.org/10.3390/f13071044
Khademibami L., Bobadilha G.S. Recent Developments Studies on Wood Protection Research in Academia: A Review. Frontiers in Forests and Global Change, 2022, vol. 5, art. no. 793177. https://doi.org/10.3389/ffgc.2022.793177
Narasimha Murthy K., Chawla V.K., Upadhayay V.K., Prakash V. Evaluation of New Boron Fixation System for Wood Preservation. International Journal of Engineering Research And Management (IJERM), 2019, vol. 6, iss. 8, pp. 28–31.
Pournou A. Wood Deterioration by Insects. Biodeterioration of Wooden Cultural Heritage: Organisms and Decay Mechanisms in Aquatic and Terrestrial Ecosystems. Springer, Cham, 2020, pp. 425–526. https://doi.org/10.1007/978-3-030-46504-9_7
Sürdem S., Eseroglu C., Yildiz S., Sögütlü C., Yörükoglu A. Combustion and Decay Resistance Performance of Scots Pine Treated with Boron and Copper Based Wood Preservatives. Drvna Industrija, 2022, vol. 73, no. 4, pp. 397–404. https://doi.org/10.5552/drvind.2022.2125
Veselov V., Abu-Khasan M., Egorov V. Innovative Designs of Wooden Beams in Conditions Far North. IOP Conference Series: Materials Science and Engineering, 2020, vol. 753, art. no. 022024. https://doi.org/10.1088/1757-899X/753/2/022024
Younis A., Dodoo A. Cross-Laminated Timber for Building Construction: A Life-Cycle-Assessment Overview. Journal of Building Engineering, 2022, vol. 52, art. no. 104482. https://doi.org/10.1016/j.jobe.2022.104482
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.