Effect of Sodium Cromoglycate and Intramural Ganglia on TNFR1 Gene Expression in the Bronchi of Rats with Ovalbumin-Induced Bronchial Asthma
DOI:
https://doi.org/10.37482/2687-1491-Z176Keywords:
TNFR1, mast cells, intramural ganglion, sodium cromoglycate, ovalbumin-induced asthma, tumour necrosis factor-αAbstract
The purpose of this article was to study TNFR1 gene expression in the bronchi of rats with ovalbumininduced bronchial asthma, taking into account intramural metasympathetic ganglia and the stabilization of mast cell membranes with sodium cromoglycate. In this paper, gene expression refers to the accumulation of mRNA in bronchial tissues. Expression of the TNFR1 gene and receptor plays an important role in the development of allergic asthma. For this reason, the TNFR1 gene was chosen for the analysis. Materials and methods. Bronchial samples from Wistar rats were studied using real-time polymerase chain reaction. For experiments, bronchi with ganglia (in the bifurcation area) and bronchi without ganglia (straight sections) were taken. The material was collected from 7 groups of rats: with ovalbumin-induced bronchial asthma (6 groups) and control animals (1 group). Mast cell stabilizer sodium cromoglycate was used to treat 3 groups of rats with simulated asthma. Results. It was found that the expression of mRNA encoding TNFR1 increases in rats developing bronchial asthma. In bronchial samples with ganglia, TNFR1 gene expression was higher than in bronchial preparations without ganglia. Under the influence of sodium cromoglycate, TNFR1 gene expression decreased. Based on the results obtained, it was suggested that mast cells and neurons of the intramural ganglion have a rather pronounced effect on TNFR1 gene expression.
Downloads
References
Ahmad S., Azid N.A., Boer J.C., Lim J., Chen X., Plebanski M., Mohamud R. The Key Role of TNF-TNFR2 Interactions in the Modulation of Allergic Inflammation: A Review // Front. Immunol. 2018. Vol. 9. Art. № 2572. https://doi.org/10.3389/fimmu.2018.02572
Bystrom J., Clanchy F.I., Taher T.E., Mangat P., Jawad A.S., Williams R.O., Mageed R.A. TNF-α in the Regulation of Treg and Th17 Cells in Rheumatoid Arthritis and Other Autoimmune Inflammatory Diseases // Cytokine. 2018. Vol. 101. Р. 4–13. https://doi.org/10.1016/j.cyto.2016.09.001
Probert L. TNF and Its Receptors in the CNS: The Essential, the Desirable and the Deleterious Effects // Neuroscience. 2015. Vol. 302. Р. 2–22. https://doi.org/10.1016/j.neuroscience.2015.06.038
Pasparakis M., Vandenabeele P. Necroptosis and Its Role in Inflammation // Nature. 2015. Vol. 517. Р. 311–320. https://doi.org/10.1038/nature14191
Kleinbongard P., Schulz R., Heusch G. TNF-α in Myocardial Ischemia/Reperfusion, Remodeling and Heart Failure // Heart Fail. Rev. 2011. Vol. 16, № 1. Р. 49–69. https://doi.org/10.1007/s10741-010-9180-8
Niessen N.M., Gibson P.G., Simpson J.L., Scott H.A., Baines K.J., Fricker M. Airway Monocyte Modulation Relates to Tumour Necrosis Factor Dysregulation in Neutrophilic Asthma // ERJ Open Res. 2021. Vol. 7, № 3. P. 00131–02021. https://doi.org/10.1183/23120541.00131-2021
Alshevskaya A., Zhukova J., Kireev F., Lopatnikova J., Evsegneeva I., Demina D., Nepomniashchikch V., Gladkikh V., Karaulov A., Sennikov S. Redistribution of TNF Receptor 1 and 2 Expression on Immune Cells in Patients with Bronchial Asthma // Cells. 2022. Vol. 11, № 11. Art. № 1736. https://doi.org/10.3390/cells11111736
Berry M.A., Hargadon B., Shelley M., Parker D., Shaw D.E., Green R.H., Bradding P., Brightling C.E., Wardlaw A.J., Pavord I.D. Evidence of a Role of Tumor Necrosis Factor α in Refractory Asthma // N. Engl. J. Med. 2006. Vol. 354, № 7. Р. 697–708. https://doi.org/10.1056/nejmoa050580
Whitehead G.S., Thomas S.Y., Shalaby K.H., Nakano K., Moran T.P., Ward J.M., Flake G.P., Nakano H., Cook D.N. TNF Is Required for TLR Ligand-Mediated but Not Protease-Mediated Allergic Airway Inflammation // J. Clin. Invest. 2017. Vol. 127, № 9. Р. 3313–3326. https://doi.org/10.1172/jci90890
Proudfoot A., Bayliffe A., O’Kane C.M., Wright T., Serone A., Bareille P.J., Brown V., Hamid U.I., Chen Y., Wilson R., Cordy J., Morley P., de Wildt R., Elborn S., Hind M., Chilvers E.R., Griffiths M., Summers C., McAuley D.F. Novel Anti-Tumour Necrosis Factor Receptor-1 (TNFR1) Domain Antibody Prevents Pulmonary Inflammation in Experimental Acute Lung Injury // Thorax. 2018. Vol. 73, № 8. Р. 723–730. https://doi.org/10.1136/thoraxjnl-2017-210305
Кучер А.Н. Нейрогенное воспаление: биохимические маркеры, генетический контроль и болезни // Бюл. сиб. медицины. 2020. Т. 19, № 2. С. 171–181. https://doi.org/10.20538/1682-0363-2020-2-171-181
Chiang C.H. Distribution of Ganglion Neurons in the Trachea of the Rat // Kaibogaku Zasshi. 1993. Vol. 68, № 6. Р. 607–616.
Close B., Banister K., Baumans V., Bernoth E.M., Bromage N., Bunyan J., Erhardt W., Flecknell P., Gregory N., Hackbarth H., Morton D., Warwick C. Recommendations for Euthanasia of Experimental Animals: Part 2 // Lab. Anim. 1997. Vol. 31, № 1. Р. 1–32. https://doi.org/10.1258/002367797780600297
Yamaguchi M., Shibata O., Nishioka K., Makita T., Sumikawa K. Propofol Attenuates Ovalbumin-Induced Smooth Muscle Contraction of the Sensitized Rat Trachea: Inhibition of Serotonergic and Cholinergic Signaling // Anesth. Analg. 2006. Vol. 103, № 3. Р. 594–600. https://doi.org/10.1213/01.ane.0000229853.01875.60
Yilmaz A., Onen H., Alp E., Menevse S. Real-Time PCR for Gene Expression Analysis // Polymerase Chain Reaction / ed. by P. Hernandez-Rodriguez, A.P. Ramirez Gomez. Intech, 2012. P. 229–254.
Masuda N., Mantani Y., Yoshitomi C., Yuasa H., Nishida M., Aral M., Kawano J., Yokoyama T., Hoshi N., Kitagawa H. Immunohistochemical Study on the Secretory Host Defense System with Lysozyme and Secretory Phospholipase A2 Throughout Rat Respiratory Tract // J. Vet. Med. Sci. 2018. Vol. 80, № 2. Р. 323–332. https://doi.org/10.1292/jvms.17-0503
Papazian I., Tsoukala E., Boutou A., Karamita M., Kambas K., Iliopoulou L., Fischer R., Kontermann R.E., Denis M.C., Kollias G., Lassmann H., Probert L. Fundamentally Different Roles of Neuronal TNF Receptors in CNS Pathology: TNFR1 and IKKβ Promote Microglial Responses and Tissue Injury in Demyelination While TNFR2 Protects Against Excitotoxicity in Mice // J. Neuroinflammation. 2021. Vol. 18, № 1. Art. № 222. https://doi.org/10.1186/s12974-021-02200-4
Kumar S., Joos G., Boon L., Tournoy K., Provoost S., Maes T. Role of Tumor Necrosis Factor-α and Its Receptors in Diesel Exhaust Particle-Induced Pulmonary Inflammation // Sci. Rep. 2017. Vol. 7, № 1. Art. № 11508. https://doi.org/10.1038/s41598-017-11991-7