Influence of Intracellular Regulation of Metabolism on the Population Composition of Peripheral Blood Lymphocytes

Authors

DOI:

https://doi.org/10.37482/2687-1491-Z155

Keywords:

HIF-1α, SIRT3, adenosine triphosphate (ATP), cellular immunity, lymphocyte populations, immunometabolism

Abstract

Metabolic activity has a significant impact on the differentiation, proliferation and functioning of T cells. Different lymphocyte subpopulations use, to varying degrees, glycolysis and mitochondrial metabolism, whose main regulators are hypoxia-inducible factor 1-alpha (HIF-1α) and sirtuin 3 (SIRT3), respectively. The purpose of this paper was to study changes in the population composition of peripheral blood lymphocytes in humans depending on the level of the intracellular metabolic regulators SIRT3 and HIF-1α. Materials and methods. 227 residents of the city of Arkhangelsk and the Arkhangelsk Region were examined (mean age 42 ± 11 years). Absolute lymphocyte count was determined using the Sysmex XS 500i haematology analyser, while CD3+, CD4+, CD8+, CD10+, CD25+ and CD95+ phenotypes content, by indirect immunoperoxidase reaction. Intracellular adenosine triphosphate (ATP) concentration was measured using the luciferase bioluminescence method. HIF-1α and SIRT3 concentrations were measured in lymphocyte lysate using enzyme immunoassay. To divide the total sample into groups according to SIRT3 and HIF-1α content, k-means clustering was utilized. Results. Changes in SIRT3 and HIF-1α intracellular concentrations correlated with ATP concentration. It was found that in the group with high HIF-1α content, the proportion of CD4+, CD8+, CD10+ and CD25+ lymphocytes was greater than in the group with high SIRT3 concentration, which had a greater proportion of CD95+ lymphocytes. Thus, the content of intracellular metabolic regulators that regulate ATP production pathways in the cell, i.e. oxidative phosphorylation (SIRT3) and glycolysis (HIF-1α), affects the population composition of lymphocytes and is therefore important for assessing the immune response.

Downloads

Download data is not yet available.

References

Chapman N.M., Chi H. Metabolic Adaptation of Lymphocytes in Immunity and Disease // Immunity. 2022. Vol. 55, № 1. P. 14–30. DOI: 10.1016/j.immuni.2021.12.012

Huang H.-Y., Luther S.A. Expression and Function of Interleukin-7 in Secondary and Tertiary Lymphoid Organs // Semin. Immunol. 2012. Vol. 24, № 3. Р. 175–189. DOI: 10.1016/j.smim.2012.02.008

Kumar B.V., Connors T.J., Farber D.L. Human T Cell Development, Localization, and Function Throughout Life // Immunity. 2018. Vol. 48, № 2. P. 202–213. DOI: 10.1016/j.immuni.2018.01.007

Chapman N.M., Boothby M.R., Chi H. Metabolic Coordination of T Cell Quiescence and Activation // Nat. Rev. Immunol. 2020. Vol. 20. P. 55–70. DOI: 10.1038/s41577-019-0203-y

Shyer J.A., Flavell R.A., Bailis W. Metabolic Signaling in T Cells // Cell Res. 2020. Vol. 30, № 8. P. 649–659. DOI: 10.1038/s41422-020-0379-5

Kierans S.J., Taylor C.T. Regulation of Glycolysis by the Hypoxia-Inducible Factor (HIF): Implications for Cellular Physiology // J. Physiol. 2021. Vol. 599, № 1. P. 23–37. DOI: 10.1113/JP280572

Anne F., McGettrick L., O’Neill L.A.J. The Role of HIF in Immunity and Inflammation // Cell Metab. 2020. Vol. 32, № 4. P. 524–536. DOI: 10.1016/j.cmet.2020.08.002

Cho S.H., Raybuck A.L., Blagih J., Kemboi E., Haase V.H., Jones R.G., Boothby M.R. Hypoxia-Inducible Factors in CD4+ T Cells Promote Metabolism, Switch Cytokine Secretion, and T Cell Help in Humoral Immunity // Proc. Natl. Acad. Sci. USA. 2019. Vol. 116, № 18. P. 8975–8984. DOI: 10.1073/pnas.1811702116

Marcus J.M., Andrabi S.A. SIRT3 Regulation Under Cellular Stress: Making Sense of the Ups and Downs // Front. Neurosci. 2018. Vol. 12. Art. № 799. DOI: 10.3389/fnins.2018.00799

Ozden O., Park S.-H., Wagner B.A., Song H.Y., Zhu Y., Vassilopoulos A., Jung B., Buettner G.R., Gius D. SIRT3 Deacetylates and Increases Pyruvate Dehydrogenase Activity in Cancer Cells // Free Radic. Biol. Med. 2014. Vol. 76. P. 163–172. DOI: 10.1016/j.freeradbiomed.2014.08.001

Pillai V.B., Sundaresan N.R., Gupta M.P. Regulation of Akt Signaling by Sirtuins: Its Implication in Cardiac Hypertrophy and Aging // Circ. Res. 2014. Vol. 114, № 2. P. 368–378. DOI: 10.1161/CIRCRESAHA.113.300536

Wang G., Fu X.-L., Wang J.-J., Guan R., Sun Y., Tony To S.-S. Inhibition of Glycolytic Metabolism in Glioblastoma Cells by Pt3glc Combinated with PI3K Inhibitor via SIRT3-Mediated Mitochondrial and PI3K/Akt-MAPK Pathway // J. Cell. Physiol. 2019. Vol. 234, № 5. P. 5888–5903. DOI: 10.1002/jcp.26474

Fu X., Li K., Niu Y., Lin Q., Liang H., Luo X., Liu L., Li N. The mTOR/PGC-1α/SIRT3 Pathway Drives Reductive Glutamine Metabolism to Reduce Oxidative Stress Caused by ISKNV in CPB Cells // Microbiol. Spectr. 2022. Vol. 10, № 1. Art. № e0231021. DOI: 10.1128/spectrum.02310-21

Steinert E.M., Vasan K., Chandel N.S. Mitochondrial Metabolism Regulation of T Cell-Mediated Immunity // Annu. Rev. Immunol. 2021. Vol. 39. P. 395–416. DOI: 10.1146/annurev-immunol-101819-082015

Almeida L., Lochner M., Berod L., Sparwasser T. Metabolic Pathways in T Cell Activation and Lineage Differentiation // Semin. Immunol. 2016. Vol. 28, № 5. P. 514–524. DOI: 10.1016/j.smim.2016.10.009

van der Windt G.J.W., Pearce E.L. Metabolic Switching and Fuel Choice During T-Cell Differentiation and Memory Development // Immunol. Rev. 2012. Vol. 249, № 1. P. 27–42. DOI: 10.1111/j.1600-065X.2012.01150.x

Madden M.Z., Rathmell J.C. The Complex Integration of T-Cell Metabolism and Immunotherapy // Cancer Discov. 2021. Vol. 11, № 7. P. 1636–1643. DOI: 10.1158/2159-8290.CD-20-0569

Tao J.-H., Barbi J., Pan F. Hypoxia-Inducible Factors in T Lymphocyte Differentiation and Function. A Review in the Theme: Cellular Responses to Hypoxia // Am. J. Physiol. Cell Physiol. 2015. Vol. 309, № 9. P. С580–С589. DOI: 10.1152/ajpcell.00204.2015

Pawlus M.R., Wang L., Hu C.-J. STAT3 and HIF1α Cooperatively Activate HIF1 Target Genes in MDA-MB-231 and RCC4 Cells // Oncogene. 2014. Vol. 33, № 13. P. 1670–1679. DOI: 10.1038/onc.2013.115

Dikalova A.E., Itani H.A., Nazarewicz R.R., McMaster W.G., Flynn C.R., Uzhachenko R., Fessel J.P., Gamboa J.L., Harrison D.G., Dikalov S.I. Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension // Circ. Res. 2017. Vol. 121, № 5. P. 564–574. DOI: 10.1161/CIRCRESAHA.117.310933

Soto-Heredero G., Gómez de las Heras M.M., Gabandé-Rodríguez E., Oller J., Mittelbrunn M. Glycolysis – a Key Player in the Inflammatory Response // FEBS J. 2020. Vol. 287, № 16. P. 3350–3369. DOI: 10.1111/febs.15327

Dang E.V., Barbi J., Yang H.-Y. Control of TH17/Treg Balance by Hypoxia-Inducible Factor 1 // Cell. 2011. Vol. 146, № 5. P. 772–784. DOI: 10.1016/j.cell.2011.07.033

Veliça P., Cunha P.P., Vojnovic N., Foskolou I.P., Bargiela D., Gojkovic M., Rundqvist H., Johnson R.S. Modified Hypoxia-Inducible Factor Expression in CD8+ T Cells Increases Antitumor Efficacy // Cancer Immunol. Res. 2021. Vol. 9, № 4. P. 401–414. DOI: 10.1158/2326-6066.CIR-20-0561

Biswas S., Troy H., Leek R., Chung Y.-L., Li J.-L., Raval R.R., Turley H., Gatter K., Pezzella F., Griffiths J.R., Stubbs M., Harris A.L. Effects of HIF-1α and HIF-2α on Growth and Metabolism of Clear-Cell Renal Cell Carcinoma 786-0 Xenografts // J. Oncol. 2010. Vol. 2010. Art. № 757908. DOI: 10.1155/2010/757908

Yu W., Denu R.A., Krautkramer K.А., Grindle K.M., Yang D.T., Asimakopoulos F., Hematti P., Denu J.M. Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies // J. Biol. Chem. 2016. Vol. 291, № 7. P. 3268–3279. DOI: 10.1074/jbc.M115.702076

Zamaraeva M.V., Sabirov R.Z., Maeno E., Ando-Akatsuka Y., Bessonova S.V., Okada Y. Cells Die with Increased Cytosolic ATP During Apoptosis: A Bioluminescence Study with Intracellular Luciferase // Cell Death Differ. 2005. Vol. 12, № 11. P. 1390–1397. DOI: 10.1038/sj.cdd.4401661

Yarosz E.L., Chang C.-H. The Role of Reactive Oxygen Species in Regulating T Cell-Mediated Immunity and Disease // Immune Netw. 2018. Vol. 18, № 1. Art. № e14. DOI: 10.4110/in.2018.18.e14

Matsuura K., Canfield K., Feng W., Kurokawa M. Metabolic Regulation of Apoptosis in Cancer // Int. Rev. Cell. Mol. Biol. 2016. Vol. 327. P. 43–87. DOI: 10.1016/bs.ircmb.2016.06.006

Williams J.W., Ferreira C.M., Blaine K.M., Rayon C., Velázquez F., Tong J., Peter M.E., Sperling A.I. NonApoptotic Fas (CD95) Signaling on T Cells Regulates the Resolution of Th2-Mediated Inflammation // Front. Immunol. 2018. Vol. 9. Art. № 2521. DOI: 10.3389/fimmu.2018.02521

Neeli P.K., Gollavilli P.N., Mallappa S., Hari S.G., Kotamraju S. A Novel Metadherinδ7 Splice Variant Enhances Triple Negative Breast Cancer Aggressiveness by Modulating Mitochondrial Function via NFĸB-SIRT3 Axis // Oncogene. 2020. Vol. 39, № 10. P. 2088–2102. DOI: 10.1038/s41388-019-1126-6

References

Chapman N.M., Chi H. Metabolic Adaptation of Lymphocytes in Immunity and Disease. Immunity, 2022, vol. 55, no. 1, pp. 14–30. DOI: 10.1016/j.immuni.2021.12.012

Huang H.-Y., Luther S.A. Expression and Function of Interleukin-7 in Secondary and Tertiary Lymphoid Organs. Semin. Immunol., 2012, vol. 24, no. 3, pp. 175–189. DOI: 10.1016/j.smim.2012.02.008

Kumar B.V., Connors T.J., Farber D.L. Human T Cell Development, Localization, and Function Throughout Life. Immunity, 2018, vol. 48, no. 2, pp. 202–213. DOI: 10.1016/j.immuni.2018.01.007

Chapman N.M., Boothby M.R., Chi H. Metabolic Coordination of T Cell Quiescence and Activation. Nat. Rev. Immunol., 2020, vol. 20, pp. 55–70. DOI: 10.1038/s41577-019-0203-y

Shyer J.A., Flavell R.A., Bailis W. Metabolic Signaling in T Cells. Cell Res., 2020, vol. 30, no. 8, pp. 649–659. DOI: 10.1038/s41422-020-0379-5

Kierans S.J., Taylor C.T. Regulation of Glycolysis by the Hypoxia-Inducible Factor (HIF): Implications for Cellular Physiology. J. Physiol., 2021, vol. 599, no. 1, pp. 23–37. DOI: 10.1113/JP280572

Anne F., McGettrick L., O’Neill L.A.J. The Role of HIF in Immunity and Inflammation. Cell Metab., 2020, vol. 32, no. 4, pp. 524–536. DOI: 10.1016/j.cmet.2020.08.002

Cho S.H., Raybuck A.L., Blagih J., Kemboi E., Haase V.H., Jones R.G., Boothby M.R. Hypoxia-Inducible Factors in CD4+ T Cells Promote Metabolism, Switch Cytokine Secretion, and T Cell Help in Humoral Immunity. Proc. Natl. Acad. Sci. USA, 2019, vol. 116, no. 18, pp. 8975–8984. DOI: 10.1073/pnas.1811702116

Marcus J.M., Andrabi S.A. SIRT3 Regulation Under Cellular Stress: Making Sense of the Ups and Downs. Front. Neurosci., 2018, vol. 12. Art. no. 799. DOI: 10.3389/fnins.2018.00799

Ozden O., Park S.-H., Wagner B.A., Song H.Y., Zhu Y., Vassilopoulos A., Jung B., Buettner G.R., Gius D. SIRT3 Deacetylates and Increases Pyruvate Dehydrogenase Activity in Cancer Cells. Free Radic. Biol. Med., 2014, vol. 76, pp. 163–172. DOI: 10.1016/j.freeradbiomed.2014.08.001

Pillai V.B., Sundaresan N.R., Gupta M.P. Regulation of Akt Signaling by Sirtuins: Its Implication in Cardiac Hypertrophy and Aging. Circ. Res., 2014, vol. 114, no. 2, pp. 368–378. DOI: 10.1161/CIRCRESAHA.113.300536

Wang G., Fu X.-L., Wang J.-J., Guan R., Sun Y., Tony To S.-S. Inhibition of Glycolytic Metabolism in Glioblastoma Cells by Pt3glc Combinated with PI3K Inhibitor via SIRT3-Mediated Mitochondrial and PI3K/AktMAPK Pathway. J. Cell. Physiol., 2019, vol. 234, no. 5, pp. 5888–5903. DOI: 10.1002/jcp.26474

Fu X., Li K., Niu Y., Lin Q., Liang H., Luo X., Liu L., Li N. The mTOR/PGC-1α/SIRT3 Pathway Drives Reductive Glutamine Metabolism to Reduce Oxidative Stress Caused by ISKNV in CPB Cells. Microbiol. Spectr., 2022, vol. 10, no. 1. Art. no. e0231021. DOI: 10.1128/spectrum.02310-21

Steinert E.M., Vasan K., Chandel N.S. Mitochondrial Metabolism Regulation of T Cell-Mediated Immunity. Annu. Rev. Immunol., 2021, vol. 39, pp. 395–416. DOI: 10.1146/annurev-immunol-101819-082015

Almeida L., Lochner M., Berod L., Sparwasser T. Metabolic Pathways in T Cell Activation and Lineage Differentiation. Semin. Immunol., 2016, vol. 28, no. 5, pp. 514–524. DOI: 10.1016/j.smim.2016.10.009

van der Windt G.J.W., Pearce E.L. Metabolic Switching and Fuel Choice During T-Cell Differentiation and Memory Development. Immunol. Rev., 2012, vol. 249, no. 1, pp. 27–42. DOI: 10.1111/j.1600-065X.2012.01150.x

Madden M.Z., Rathmell J.C. The Complex Integration of T-Cell Metabolism and Immunotherapy. Cancer Discov., 2021, vol. 11, no. 7, pp. 1636–1643. DOI: 10.1158/2159-8290.CD-20-0569

Tao J.-H., Barbi J., Pan F. Hypoxia-Inducible Factors in T Lymphocyte Differentiation and Function. A Review in the Theme: Cellular Responses to Hypoxia. Am. J. Physiol. Cell Physiol., 2015, vol. 309, no. 9, pp. C580–C589. DOI: 10.1152/ajpcell.00204.2015

Pawlus M.R., Wang L., Hu C.-J. STAT3 and HIF1α Cooperatively Activate HIF1 Target Genes in MDA-MB-231 and RCC4 Cells. Oncogene, 2014, vol. 33, no. 13, pp. 1670–1679. DOI: 10.1038/onc.2013.115

Dikalova A.E., Itani H.A., Nazarewicz R.R., McMaster W.G., Flynn C.R., Uzhachenko R., Fessel J.P., Gamboa J.L., Harrison D.G., Dikalov S.I. Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension. Circ. Res., 2017, vol. 121, no. 5, pp. 564–574. DOI: 10.1161/CIRCRESAHA.117.310933

Soto-Heredero G., Gómez de las Heras M.M., Gabandé-Rodríguez E., Oller J., Mittelbrunn M. Glycolysis – a Key Player in the Inflammatory Response. FEBS J., 2020, vol. 287, no. 16, pp. 3350–3369. DOI: 10.1111/febs.15327

Dang E.V., Barbi J., Yang H.-Y., Jinasena D., Yu H., Zheng Y., Bordman Z., Fu J., Kim Y., Yen H.-R., Luo W., Zeller K., Shimoda L., Topalian S.L., Semenza G.L., Dang C.V., Pardoll D.M., Pan F. Control of TH17/Treg Balance by Hypoxia-Inducible Factor 1. Cell, 2011, vol. 146, no. 5, pp. 772–784. DOI: 10.1016/j.cell.2011.07.033

Veliça P., Cunha P.P., Vojnovic N., Foskolou I.P., Bargiela D., Gojkovic M., Rundqvist H., Johnson R.S. Modified Hypoxia-Inducible Factor Expression in CD8+ T Cells Increases Antitumor Efficacy. Cancer Immunol. Res., 2021, vol. 9, no. 4, pp. 401–414. DOI: 10.1158/2326-6066.CIR-20-0561

Biswas S., Troy H., Leek R., Chung Y.-L., Li J.-L., Raval R.R., Turley H., Gatter K., Pezzella F., Griffiths J.R., Stubbs M., Harris A.L. Effects of HIF-1α and HIF2α on Growth and Metabolism of Clear-Cell Renal Cell Carcinoma 786-0 Xenografts. J. Oncol., 2010, vol. 2010. Art. no. 757908. DOI: 10.1155/2010/757908

Yu W., Denu R.A., Krautkramer K.A., Grindle K.M., Yang D.T., Asimakopoulos F., Hematti P., Denu J.M. Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies. J. Biol. Chem., 2016, vol. 291, no. 7, pp. 3268–3279. DOI: 10.1074/jbc.M115.702076

Zamaraeva M.V., Sabirov R.Z., Maeno E., Ando-Akatsuka Y., Bessonova S.V., Okada Y. Cells Die with Increased Cytosolic ATP During Apoptosis: A Bioluminescence Study with Intracellular Luciferase. Cell Death Differ., 2005, vol. 12, no. 11, pp. 1390–1397. DOI: 10.1038/sj.cdd.4401661

Yarosz E.L., Chang C.-H. The Role of Reactive Oxygen Species in Regulating T Cell-Mediated Immunity and Disease. Immune Netw., 2018, vol. 18, no. 1. Art. no. e14. DOI: 10.4110/in.2018.18.e14

Matsuura K., Canfield K., Feng W., Kurokawa M. Metabolic Regulation of Apoptosis in Cancer. Int. Rev. Cell. Mol. Biol., 2016, vol. 327, pp. 43–87. DOI: 10.1016/bs.ircmb.2016.06.006

Williams J.W., Ferreira C.M., Blaine K.M., Rayon C., Velázquez F., Tong J., Peter M.E., Sperling A.I. NonApoptotic Fas (CD95) Signaling on T Cells Regulates the Resolution of Th2-Mediated Inflammation. Front. Immunol., 2018, vol. 9. Art. no. 2521. DOI: 10.3389/fimmu.2018.02521

Neeli P.K., Gollavilli P.N., Mallappa S., Hari S.G., Kotamraju S. A Novel Metadherinδ7 Splice Variant Enhances Triple Negative Breast Cancer Aggressiveness by Modulating Mitochondrial Function via NFĸB-SIRT3 Axis. Oncogene, 2020, vol. 39, no. 10, pp. 2088–2102. DOI: 10.1038/s41388-019-1126-6

Published

2023-10-09

How to Cite

Kruglov С. ., Zubatkina О. ., & Samodova А. . (2023). Influence of Intracellular Regulation of Metabolism on the Population Composition of Peripheral Blood Lymphocytes. Journal of Medical and Biological Research, 11(3), 292–301. https://doi.org/10.37482/2687-1491-Z155