Влияние внутриклеточной регуляции метаболизма на популяционный состав лимфоцитов периферической крови человека

Авторы

  • С.Д. Круглов Федеральный исследовательский центр комплексного изучения Арктики имени академика Н.П. Лаверова Уральского отделения Российской академии наук https://orcid.org/0000-0002-4085-409X
  • О.В. Зубаткина Федеральный исследовательский центр комплексного изучения Арктики имени академика Н.П. Лаверова Уральского отделения Российской академии наук https://orcid.org/0000-0002-5039-2220
  • А.В. Самодова Федеральный исследовательский центр комплексного изучения Арктики имени академика Н.П. Лаверова Уральского отделения Российской академии наук https://orcid.org/0000-0001-9835-8083

DOI:

https://doi.org/10.37482/2687-1491-Z155

Ключевые слова:

индуцируемый гипоксией фактор 1-альфа, сиртуин 3, аденозинтрифосфат (АТФ), клеточный иммунитет, популяции лимфоцитов, иммунометаболизм

Аннотация

Метаболическая активность оказывает существенное влияние на дифференцировку, пролиферацию и функционирование Т-клеток. Различные субпопуляции лимфоцитов в разной степени используют гликолиз и митохондриальный метаболизм, основными регуляторами которых являются индуцируемый гипоксией фактор 1-альфа (HIF-1α) и сиртуин 3 (SIRT3) соответственно. Цель исследования – выявить характер изменений популяционного состава лимфоцитов периферической крови человека в зависимости от уровней внутриклеточных регуляторов метаболизма SIRT3 и HIF-1α. Материалы и методы. Обследовано 227 жителей г. Архангельска и Архангельской области, средний возраст которых составил 42±11 лет. Абсолютное содержание лимфоцитов в венозной крови определялось на гематологическом анализаторе Sysmex XS 500i, содержание фенотипов CD3+, CD4+, CD8+, CD10+, CD25+ , CD95+ – методом непрямой иммунопероксидазной реакции. Внутриклеточное содержание аденозинтрифосфата (АТФ) было измерено биолюминесцентным методом с использованием люциферазы. Концентрации HIF-1α и SIRT3 измерялись в лизате лимфоцитов при помощи иммуноферментного анализа. Для разделения общей выборки на группы по содержанию SIRT3 и HIF-1α применялся кластерный анализ (метод k-средних). Результаты. Внутриклеточная концентрация SIRT3 и HIF-1α изменялась согласованно с внутриклеточной концентрацией АТФ. Установлено, что в группе с высокой концентрацией HIF-1α удельный вес CD4+, CD8+, CD10+, CD25+-лимфоцитов был выше, чем в группе с высокой концентрацией SIRT3, в которой выше был удельный вес CD95+-лимфоцитов. Таким образом, содержание внутриклеточных регуляторов метаболизма, координирующих работу путей наработки АТФ в клетке – окислительное фосфорилирование (SIRT3) и гликолиз (HIF-1α), влияет на популяционный состав лимфоцитов и поэтому важно для оценки иммунного реагирования.

Скачивания

Данные скачивания пока недоступны.

Библиографические ссылки

Chapman N.M., Chi H. Metabolic Adaptation of Lymphocytes in Immunity and Disease // Immunity. 2022. Vol. 55, № 1. P. 14–30. DOI: 10.1016/j.immuni.2021.12.012

Huang H.-Y., Luther S.A. Expression and Function of Interleukin-7 in Secondary and Tertiary Lymphoid Organs // Semin. Immunol. 2012. Vol. 24, № 3. Р. 175–189. DOI: 10.1016/j.smim.2012.02.008

Kumar B.V., Connors T.J., Farber D.L. Human T Cell Development, Localization, and Function Throughout Life // Immunity. 2018. Vol. 48, № 2. P. 202–213. DOI: 10.1016/j.immuni.2018.01.007

Chapman N.M., Boothby M.R., Chi H. Metabolic Coordination of T Cell Quiescence and Activation // Nat. Rev. Immunol. 2020. Vol. 20. P. 55–70. DOI: 10.1038/s41577-019-0203-y

Shyer J.A., Flavell R.A., Bailis W. Metabolic Signaling in T Cells // Cell Res. 2020. Vol. 30, № 8. P. 649–659. DOI: 10.1038/s41422-020-0379-5

Kierans S.J., Taylor C.T. Regulation of Glycolysis by the Hypoxia-Inducible Factor (HIF): Implications for Cellular Physiology // J. Physiol. 2021. Vol. 599, № 1. P. 23–37. DOI: 10.1113/JP280572

Anne F., McGettrick L., O’Neill L.A.J. The Role of HIF in Immunity and Inflammation // Cell Metab. 2020. Vol. 32, № 4. P. 524–536. DOI: 10.1016/j.cmet.2020.08.002

Cho S.H., Raybuck A.L., Blagih J., Kemboi E., Haase V.H., Jones R.G., Boothby M.R. Hypoxia-Inducible Factors in CD4+ T Cells Promote Metabolism, Switch Cytokine Secretion, and T Cell Help in Humoral Immunity // Proc. Natl. Acad. Sci. USA. 2019. Vol. 116, № 18. P. 8975–8984. DOI: 10.1073/pnas.1811702116

Marcus J.M., Andrabi S.A. SIRT3 Regulation Under Cellular Stress: Making Sense of the Ups and Downs // Front. Neurosci. 2018. Vol. 12. Art. № 799. DOI: 10.3389/fnins.2018.00799

Ozden O., Park S.-H., Wagner B.A., Song H.Y., Zhu Y., Vassilopoulos A., Jung B., Buettner G.R., Gius D. SIRT3 Deacetylates and Increases Pyruvate Dehydrogenase Activity in Cancer Cells // Free Radic. Biol. Med. 2014. Vol. 76. P. 163–172. DOI: 10.1016/j.freeradbiomed.2014.08.001

Pillai V.B., Sundaresan N.R., Gupta M.P. Regulation of Akt Signaling by Sirtuins: Its Implication in Cardiac Hypertrophy and Aging // Circ. Res. 2014. Vol. 114, № 2. P. 368–378. DOI: 10.1161/CIRCRESAHA.113.300536

Wang G., Fu X.-L., Wang J.-J., Guan R., Sun Y., Tony To S.-S. Inhibition of Glycolytic Metabolism in Glioblastoma Cells by Pt3glc Combinated with PI3K Inhibitor via SIRT3-Mediated Mitochondrial and PI3K/Akt-MAPK Pathway // J. Cell. Physiol. 2019. Vol. 234, № 5. P. 5888–5903. DOI: 10.1002/jcp.26474

Fu X., Li K., Niu Y., Lin Q., Liang H., Luo X., Liu L., Li N. The mTOR/PGC-1α/SIRT3 Pathway Drives Reductive Glutamine Metabolism to Reduce Oxidative Stress Caused by ISKNV in CPB Cells // Microbiol. Spectr. 2022. Vol. 10, № 1. Art. № e0231021. DOI: 10.1128/spectrum.02310-21

Steinert E.M., Vasan K., Chandel N.S. Mitochondrial Metabolism Regulation of T Cell-Mediated Immunity // Annu. Rev. Immunol. 2021. Vol. 39. P. 395–416. DOI: 10.1146/annurev-immunol-101819-082015

Almeida L., Lochner M., Berod L., Sparwasser T. Metabolic Pathways in T Cell Activation and Lineage Differentiation // Semin. Immunol. 2016. Vol. 28, № 5. P. 514–524. DOI: 10.1016/j.smim.2016.10.009

van der Windt G.J.W., Pearce E.L. Metabolic Switching and Fuel Choice During T-Cell Differentiation and Memory Development // Immunol. Rev. 2012. Vol. 249, № 1. P. 27–42. DOI: 10.1111/j.1600-065X.2012.01150.x

Madden M.Z., Rathmell J.C. The Complex Integration of T-Cell Metabolism and Immunotherapy // Cancer Discov. 2021. Vol. 11, № 7. P. 1636–1643. DOI: 10.1158/2159-8290.CD-20-0569

Tao J.-H., Barbi J., Pan F. Hypoxia-Inducible Factors in T Lymphocyte Differentiation and Function. A Review in the Theme: Cellular Responses to Hypoxia // Am. J. Physiol. Cell Physiol. 2015. Vol. 309, № 9. P. С580–С589. DOI: 10.1152/ajpcell.00204.2015

Pawlus M.R., Wang L., Hu C.-J. STAT3 and HIF1α Cooperatively Activate HIF1 Target Genes in MDA-MB-231 and RCC4 Cells // Oncogene. 2014. Vol. 33, № 13. P. 1670–1679. DOI: 10.1038/onc.2013.115

Dikalova A.E., Itani H.A., Nazarewicz R.R., McMaster W.G., Flynn C.R., Uzhachenko R., Fessel J.P., Gamboa J.L., Harrison D.G., Dikalov S.I. Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension // Circ. Res. 2017. Vol. 121, № 5. P. 564–574. DOI: 10.1161/CIRCRESAHA.117.310933

Soto-Heredero G., Gómez de las Heras M.M., Gabandé-Rodríguez E., Oller J., Mittelbrunn M. Glycolysis – a Key Player in the Inflammatory Response // FEBS J. 2020. Vol. 287, № 16. P. 3350–3369. DOI: 10.1111/febs.15327

Dang E.V., Barbi J., Yang H.-Y. Control of TH17/Treg Balance by Hypoxia-Inducible Factor 1 // Cell. 2011. Vol. 146, № 5. P. 772–784. DOI: 10.1016/j.cell.2011.07.033

Veliça P., Cunha P.P., Vojnovic N., Foskolou I.P., Bargiela D., Gojkovic M., Rundqvist H., Johnson R.S. Modified Hypoxia-Inducible Factor Expression in CD8+ T Cells Increases Antitumor Efficacy // Cancer Immunol. Res. 2021. Vol. 9, № 4. P. 401–414. DOI: 10.1158/2326-6066.CIR-20-0561

Biswas S., Troy H., Leek R., Chung Y.-L., Li J.-L., Raval R.R., Turley H., Gatter K., Pezzella F., Griffiths J.R., Stubbs M., Harris A.L. Effects of HIF-1α and HIF-2α on Growth and Metabolism of Clear-Cell Renal Cell Carcinoma 786-0 Xenografts // J. Oncol. 2010. Vol. 2010. Art. № 757908. DOI: 10.1155/2010/757908

Yu W., Denu R.A., Krautkramer K.А., Grindle K.M., Yang D.T., Asimakopoulos F., Hematti P., Denu J.M. Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies // J. Biol. Chem. 2016. Vol. 291, № 7. P. 3268–3279. DOI: 10.1074/jbc.M115.702076

Zamaraeva M.V., Sabirov R.Z., Maeno E., Ando-Akatsuka Y., Bessonova S.V., Okada Y. Cells Die with Increased Cytosolic ATP During Apoptosis: A Bioluminescence Study with Intracellular Luciferase // Cell Death Differ. 2005. Vol. 12, № 11. P. 1390–1397. DOI: 10.1038/sj.cdd.4401661

Yarosz E.L., Chang C.-H. The Role of Reactive Oxygen Species in Regulating T Cell-Mediated Immunity and Disease // Immune Netw. 2018. Vol. 18, № 1. Art. № e14. DOI: 10.4110/in.2018.18.e14

Matsuura K., Canfield K., Feng W., Kurokawa M. Metabolic Regulation of Apoptosis in Cancer // Int. Rev. Cell. Mol. Biol. 2016. Vol. 327. P. 43–87. DOI: 10.1016/bs.ircmb.2016.06.006

Williams J.W., Ferreira C.M., Blaine K.M., Rayon C., Velázquez F., Tong J., Peter M.E., Sperling A.I. NonApoptotic Fas (CD95) Signaling on T Cells Regulates the Resolution of Th2-Mediated Inflammation // Front. Immunol. 2018. Vol. 9. Art. № 2521. DOI: 10.3389/fimmu.2018.02521

Neeli P.K., Gollavilli P.N., Mallappa S., Hari S.G., Kotamraju S. A Novel Metadherinδ7 Splice Variant Enhances Triple Negative Breast Cancer Aggressiveness by Modulating Mitochondrial Function via NFĸB-SIRT3 Axis // Oncogene. 2020. Vol. 39, № 10. P. 2088–2102. DOI: 10.1038/s41388-019-1126-6

References

Chapman N.M., Chi H. Metabolic Adaptation of Lymphocytes in Immunity and Disease. Immunity, 2022, vol. 55, no. 1, pp. 14–30. DOI: 10.1016/j.immuni.2021.12.012

Huang H.-Y., Luther S.A. Expression and Function of Interleukin-7 in Secondary and Tertiary Lymphoid Organs. Semin. Immunol., 2012, vol. 24, no. 3, pp. 175–189. DOI: 10.1016/j.smim.2012.02.008

Kumar B.V., Connors T.J., Farber D.L. Human T Cell Development, Localization, and Function Throughout Life. Immunity, 2018, vol. 48, no. 2, pp. 202–213. DOI: 10.1016/j.immuni.2018.01.007

Chapman N.M., Boothby M.R., Chi H. Metabolic Coordination of T Cell Quiescence and Activation. Nat. Rev. Immunol., 2020, vol. 20, pp. 55–70. DOI: 10.1038/s41577-019-0203-y

Shyer J.A., Flavell R.A., Bailis W. Metabolic Signaling in T Cells. Cell Res., 2020, vol. 30, no. 8, pp. 649–659. DOI: 10.1038/s41422-020-0379-5

Kierans S.J., Taylor C.T. Regulation of Glycolysis by the Hypoxia-Inducible Factor (HIF): Implications for Cellular Physiology. J. Physiol., 2021, vol. 599, no. 1, pp. 23–37. DOI: 10.1113/JP280572

Anne F., McGettrick L., O’Neill L.A.J. The Role of HIF in Immunity and Inflammation. Cell Metab., 2020, vol. 32, no. 4, pp. 524–536. DOI: 10.1016/j.cmet.2020.08.002

Cho S.H., Raybuck A.L., Blagih J., Kemboi E., Haase V.H., Jones R.G., Boothby M.R. Hypoxia-Inducible Factors in CD4+ T Cells Promote Metabolism, Switch Cytokine Secretion, and T Cell Help in Humoral Immunity. Proc. Natl. Acad. Sci. USA, 2019, vol. 116, no. 18, pp. 8975–8984. DOI: 10.1073/pnas.1811702116

Marcus J.M., Andrabi S.A. SIRT3 Regulation Under Cellular Stress: Making Sense of the Ups and Downs. Front. Neurosci., 2018, vol. 12. Art. no. 799. DOI: 10.3389/fnins.2018.00799

Ozden O., Park S.-H., Wagner B.A., Song H.Y., Zhu Y., Vassilopoulos A., Jung B., Buettner G.R., Gius D. SIRT3 Deacetylates and Increases Pyruvate Dehydrogenase Activity in Cancer Cells. Free Radic. Biol. Med., 2014, vol. 76, pp. 163–172. DOI: 10.1016/j.freeradbiomed.2014.08.001

Pillai V.B., Sundaresan N.R., Gupta M.P. Regulation of Akt Signaling by Sirtuins: Its Implication in Cardiac Hypertrophy and Aging. Circ. Res., 2014, vol. 114, no. 2, pp. 368–378. DOI: 10.1161/CIRCRESAHA.113.300536

Wang G., Fu X.-L., Wang J.-J., Guan R., Sun Y., Tony To S.-S. Inhibition of Glycolytic Metabolism in Glioblastoma Cells by Pt3glc Combinated with PI3K Inhibitor via SIRT3-Mediated Mitochondrial and PI3K/AktMAPK Pathway. J. Cell. Physiol., 2019, vol. 234, no. 5, pp. 5888–5903. DOI: 10.1002/jcp.26474

Fu X., Li K., Niu Y., Lin Q., Liang H., Luo X., Liu L., Li N. The mTOR/PGC-1α/SIRT3 Pathway Drives Reductive Glutamine Metabolism to Reduce Oxidative Stress Caused by ISKNV in CPB Cells. Microbiol. Spectr., 2022, vol. 10, no. 1. Art. no. e0231021. DOI: 10.1128/spectrum.02310-21

Steinert E.M., Vasan K., Chandel N.S. Mitochondrial Metabolism Regulation of T Cell-Mediated Immunity. Annu. Rev. Immunol., 2021, vol. 39, pp. 395–416. DOI: 10.1146/annurev-immunol-101819-082015

Almeida L., Lochner M., Berod L., Sparwasser T. Metabolic Pathways in T Cell Activation and Lineage Differentiation. Semin. Immunol., 2016, vol. 28, no. 5, pp. 514–524. DOI: 10.1016/j.smim.2016.10.009

van der Windt G.J.W., Pearce E.L. Metabolic Switching and Fuel Choice During T-Cell Differentiation and Memory Development. Immunol. Rev., 2012, vol. 249, no. 1, pp. 27–42. DOI: 10.1111/j.1600-065X.2012.01150.x

Madden M.Z., Rathmell J.C. The Complex Integration of T-Cell Metabolism and Immunotherapy. Cancer Discov., 2021, vol. 11, no. 7, pp. 1636–1643. DOI: 10.1158/2159-8290.CD-20-0569

Tao J.-H., Barbi J., Pan F. Hypoxia-Inducible Factors in T Lymphocyte Differentiation and Function. A Review in the Theme: Cellular Responses to Hypoxia. Am. J. Physiol. Cell Physiol., 2015, vol. 309, no. 9, pp. C580–C589. DOI: 10.1152/ajpcell.00204.2015

Pawlus M.R., Wang L., Hu C.-J. STAT3 and HIF1α Cooperatively Activate HIF1 Target Genes in MDA-MB-231 and RCC4 Cells. Oncogene, 2014, vol. 33, no. 13, pp. 1670–1679. DOI: 10.1038/onc.2013.115

Dikalova A.E., Itani H.A., Nazarewicz R.R., McMaster W.G., Flynn C.R., Uzhachenko R., Fessel J.P., Gamboa J.L., Harrison D.G., Dikalov S.I. Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension. Circ. Res., 2017, vol. 121, no. 5, pp. 564–574. DOI: 10.1161/CIRCRESAHA.117.310933

Soto-Heredero G., Gómez de las Heras M.M., Gabandé-Rodríguez E., Oller J., Mittelbrunn M. Glycolysis – a Key Player in the Inflammatory Response. FEBS J., 2020, vol. 287, no. 16, pp. 3350–3369. DOI: 10.1111/febs.15327

Dang E.V., Barbi J., Yang H.-Y., Jinasena D., Yu H., Zheng Y., Bordman Z., Fu J., Kim Y., Yen H.-R., Luo W., Zeller K., Shimoda L., Topalian S.L., Semenza G.L., Dang C.V., Pardoll D.M., Pan F. Control of TH17/Treg Balance by Hypoxia-Inducible Factor 1. Cell, 2011, vol. 146, no. 5, pp. 772–784. DOI: 10.1016/j.cell.2011.07.033

Veliça P., Cunha P.P., Vojnovic N., Foskolou I.P., Bargiela D., Gojkovic M., Rundqvist H., Johnson R.S. Modified Hypoxia-Inducible Factor Expression in CD8+ T Cells Increases Antitumor Efficacy. Cancer Immunol. Res., 2021, vol. 9, no. 4, pp. 401–414. DOI: 10.1158/2326-6066.CIR-20-0561

Biswas S., Troy H., Leek R., Chung Y.-L., Li J.-L., Raval R.R., Turley H., Gatter K., Pezzella F., Griffiths J.R., Stubbs M., Harris A.L. Effects of HIF-1α and HIF2α on Growth and Metabolism of Clear-Cell Renal Cell Carcinoma 786-0 Xenografts. J. Oncol., 2010, vol. 2010. Art. no. 757908. DOI: 10.1155/2010/757908

Yu W., Denu R.A., Krautkramer K.A., Grindle K.M., Yang D.T., Asimakopoulos F., Hematti P., Denu J.M. Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies. J. Biol. Chem., 2016, vol. 291, no. 7, pp. 3268–3279. DOI: 10.1074/jbc.M115.702076

Zamaraeva M.V., Sabirov R.Z., Maeno E., Ando-Akatsuka Y., Bessonova S.V., Okada Y. Cells Die with Increased Cytosolic ATP During Apoptosis: A Bioluminescence Study with Intracellular Luciferase. Cell Death Differ., 2005, vol. 12, no. 11, pp. 1390–1397. DOI: 10.1038/sj.cdd.4401661

Yarosz E.L., Chang C.-H. The Role of Reactive Oxygen Species in Regulating T Cell-Mediated Immunity and Disease. Immune Netw., 2018, vol. 18, no. 1. Art. no. e14. DOI: 10.4110/in.2018.18.e14

Matsuura K., Canfield K., Feng W., Kurokawa M. Metabolic Regulation of Apoptosis in Cancer. Int. Rev. Cell. Mol. Biol., 2016, vol. 327, pp. 43–87. DOI: 10.1016/bs.ircmb.2016.06.006

Williams J.W., Ferreira C.M., Blaine K.M., Rayon C., Velázquez F., Tong J., Peter M.E., Sperling A.I. NonApoptotic Fas (CD95) Signaling on T Cells Regulates the Resolution of Th2-Mediated Inflammation. Front. Immunol., 2018, vol. 9. Art. no. 2521. DOI: 10.3389/fimmu.2018.02521

Neeli P.K., Gollavilli P.N., Mallappa S., Hari S.G., Kotamraju S. A Novel Metadherinδ7 Splice Variant Enhances Triple Negative Breast Cancer Aggressiveness by Modulating Mitochondrial Function via NFĸB-SIRT3 Axis. Oncogene, 2020, vol. 39, no. 10, pp. 2088–2102. DOI: 10.1038/s41388-019-1126-6

Загрузки

Опубликован

2023-10-09

Как цитировать

Круглов, С. ., Зубаткина, О. ., & Самодова, А. . (2023). Влияние внутриклеточной регуляции метаболизма на популяционный состав лимфоцитов периферической крови человека. Журнал медико-биологических исследований, 11(3), 292–301. https://doi.org/10.37482/2687-1491-Z155