Novel Markers of Endothelial Dysfunction (Review)
DOI:
https://doi.org/10.37482/2687-1491-Z257Keywords:
sVCAM-1, biomarkers of endothelial dysfunction, endocan, endoglin, galectin-3, endothelial progenitor cells, big ET-1, endothelial extracellular vesiclesAbstract
This review aims to examine the relevant current information about novel markers of endothelial dysfunction and to systematize it. The following electronic databases were searched: PubMed, CyberLeninka, eLIBRARY.RU and ScienceDirect. We selected 28 articles published between January 1, 2014 and August 30, 2024. Inclusion criteria were open access and Russian or English language. Exclusion criteria were low informational value and old data. The following keywords in Russian and English were used: endothelium, endothelial dysfunction, modern markers of endothelial dysfunction, endocan, endoglin, galectin-3, endothelial progenitor cells, big ET-1 and endothelial extracellular vesicles). We divided novel laboratory markers of endothelial dysfunction into two groups: markers produced by the endothelium and molecules that regulate endothelial activation/function. In addition, the article presents the origination mechanisms of sVCAM-1, endocan, endoglin, galectin-3, endothelial progenitor cells, endothelin, big ET-1 and endothelial extracellular vesicles. Their role in endothelial dysfunction is described, as well as their association with some common pathologies, primarily cardiovascular diseases and cancer. Further, we reviewed the most effective diagnostic methods for these biomarkers in modern clinical diagnostic laboratories. Due to the fact that the majority of these markers are not strictly specific for certain diseases, but characterize the state of the endothelium as a whole, there is an urgent need for new markers of endothelial dysfunction and for a comprehensive use of the already studied biomolecules. Determining the blood levels of the molecules in question can help in timely primary prevention, risk assessment and selection of optimal treatment and diagnostic tactics.
Downloads
References
Шабров А.В., Галенко А.С., Успенский Ю.П., Лосева К.А. Методы диагностики эндотелиальной дисфункции // Бюл. сиб. медицины. 2021. Т. 20, No 2. С. 202–209. https://doi.org/10.20538/1682-0363-2021-2-202-209
Lee D.D., Schwarz M.A. Cell-Cell Communication Breakdown and Endothelial Dysfunction // Crit. Care Clin. 2020. Vol. 36, No 2. P. 189–200. https://doi.org/10.1016/j.ccc.2019.11.001
Алекперова А.Н., Мисник А.В. Новые маркеры оценки эндотелиальной дисфункции // Forcipe. 2020. Т. 3, No S1. С. 342.
Абдурахманов З.М., Умаров Б.Я., Абдурахманов М.М. Современные биомаркеры эндотелиальной дисфункции при сердечно-сосудистых заболеваниях // РФК. 2021. Т. 17, No 4. С. 612–618. https://doi.org/10.20996/1819-6446-2021-08-08
Matheus A.S.M., da Matta M.F.B., Clemente E.L.S., Rodrigues M.L.G., Valença D.C.T., Drummond K.R.G., Gomes M.B. Biochemical and Clinical Markers of Endothelial Dysfunction Do Not Outweigh Traditional Risk Factors for the Presence of Diabetic Retinopathy in Patients with Type 1 Diabetes // Diabetol. Metab. Syndr. 2022. Vo l. 14, No 1. Art. No 141. https://doi.org/10.1186/s13098-022-00912-y
Подзолков В.И., Покровская А.Е., Ванина Д.Д., Шведов И.И. sVCAM-1 – как маркер эндотелиальной дисфункции, ассоциированный с тяжелым течением новой коронавирусной инфекции (COVID-19) // РФК. 2023. Т. 19, No 2. С. 134-–142. https://doi.org/10.20996/1819-6446-2023-03-08
Hong H.-J., Oh Y.-I., Park S.-M., An J.-H., Kim T.-H., Chae H.-K., Seo K.-W., Youn H.-Y. Evaluation of Endothelial Cell-Specific Molecule-1 as a Biomarker of Glycocalyx Damage in Canine Myxomatous Mitral Valve Disease // BMC Vet. Res. 2022. Vol. 18, No 1. Art. No 261. https://doi.org/10.1186/s12917-022-03344-y
Lu J., Liu Q., Zhu L., Liu Y., Zhu X., Peng S., Chen M., Li P. Endothelial Cell-Specific Molecule 1 Drives Cervical Cancer Progression // Cell Death Dis. 2022. Vol. 13, No 12. Art. No 1043. https://doi.org/10.1038/s41419-022-05501-5
Chen J., Jiang L., Yu X.-H., Hu M., Zhang Y.-K., Liu X., He P., Ouyang X. Endocan: A Key Player of Cardiovascular Disease // Front. Cardiovasc. Med. 2022. Vol. 8. Art. No 798699. https://doi.org/10.3389/fcvm.2021.798699
Алиева А.М., Резник Е.В., Байкова И.Е., Теплова Н.В., Макеева Л.М., Воронкова К.В., Хаджиева Н.Х., Модестова А.В., Тотолян Г.Г., Валиев Р.К., Ли А.М., Котикова И.А., Никитин И.Г. Эндокан – ключевой игрок при кардиоваскулярной патологии // Consilium Medicum. 2023. Т. 25, No 1. С. 20–28. https://doi.org/10.26442/20751753.2023.1.202079
Rathouska J., Jezkova K., Nemeckova I., Nachtigal P. Soluble Endoglin, Hypercholesterolemia and Endothelial Dysfunction // Atherosclerosis. 2015. Vol. 243, No 2. P. 383–388. https://doi.org/10.1016/j.atherosclerosis.2015.10.003
Zhang L., Li X., Zhou C., You Z., Zhang J., Cao G. The Diagnosis Values of Serum STAT4 and sEng in Preeclampsia // J. Clin. Lab. Anal. 2020. Vol. 34, No 2. Art. No e23073. https://doi.org/10.1002/jcla.23073
Горбачева А.М., Бибик Е.Е., Добрева Е.А., Елфимова А.Р., Еремкина А.К., Мокрышева Н.Г. Растворимый эндоглин – потенциальный маркер эндотелиальной дисфункции у пациентов с первичным гиперпаратиреозом: пилотное исследование // Ожирение и метаболизм. 2022. Т. 19, No 4. С. 358–368. https://doi.org/10.14341/omet12923
Rossi E., Bernabeu C. Novel Vascular Roles of Human Endoglin in Pathophysiology // J. Thromb. Haemost. 2023. Vol. 21, No 9. P. 2327–2338. https://doi.org/10.1016/j.jtha.2023.06.007
Scioli M.G., Storti G., D’Amico F., Rodríguez Guzmán R., Centofanti F., Doldo E., Céspedes Miranda E.M., Orlandi A. Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets // J. Clin. Med. 2020. Vol. 9, No 6. Art. No 1995. https://doi.org/10.3390/jcm9061995
Schoonderwoerd M.J.A., Goumans M.-J.T.H., Hawinkels L.J.A.C. Endoglin: Beyond the Endothelium // Biomolecules. 2020. Vol. 10, No 2. Art. No 289. https://doi.org/10.3390/biom10020289
Baldassarre M.P.A., Pipino C., Pandolfi A., Consoli A., Di Pietro N., Formoso G. Old and New Biomarkers Associated with Endothelial Dysfunction in Chronic Hyperglycemia // Oxid. Med. Cell. Longev. 2021. Vol. 2021. Art. No 7887426. https://doi.org/10.1155/2021/7887426
Lia G., Giaccone L., Leone S., Bruno B. Biomarkers for Early Complications of Endothelial Origin After Allogeneic Hematopoietic Stem Cell Transplantation: Do They Have a Potential Clinical Role? // Front. Immunol. 2021. Vol. 12. Art. No 641427. https://doi.org/10.3389/fimmu.2021.641427
Berezin A.E., Kremzer A.A., Martovitskaya Y.V., Samura T.A., Berezina T.A. The Predictive Role of Circulating Microparticles in Patients with Chronic Heart Failure // BBA Clin. 2014. Vol. 3. P. 18–24. https://doi.org/10.1016/j.bbacli.2014.11.006
Peyter A.-C., Armengaud J.-B., Guillot E., Yzydorczyk C. Endothelial Progenitor Cells Dysfunctions and Cardiometabolic Disorders: From Mechanisms to Therapeutic Approaches // Int. J. Mol. Sci. 2021. Vol. 22, No 13. Art. No 6667. https://doi.org/10.3390/ijms22136667
Алиева А.М., Чиркова Н.Н., Пинчук Т.В., Андреева О.Н., Пивоваров В.Ю. Эндотелины и сердечно-сосудистая патология // Рос. кардиол. журн. 2014. No 11. С. 83–87. https://doi.org/10.15829/1560-4071-2014-11-83-87
Голивец Т.П., Дубоносова Д.Г., Осипова О.А., Петрова Г.Д. Эффекты эндотелина-1 в развитии и прогрессировании метаболического синдрома и других социально значимых неинфекционных заболеваний (обзор литературы) // Актуал. проблемы медицины. 2017. No 19 (268). Вып. 39. С. 5–19.
Iglarz M., Clozel M. Mechanisms of ET-1-Induced Endothelial Dysfunction // J. Cardiovasc. Pharmacol. 2007. Vol. 50, No 6. P. 621–628. https://doi.org/10.1097/fjc.0b013e31813c6cc3
Lyu S.-Q., Zhu J., Wang J., Wu S., Zhang H., Shao X.-H., Yang Y.-M. Plasma Big Endothelin-1 Levels and Long-Term Outcomes in Patients with Atrial Fibrillation and Acute Coronary Syndrome or Undergoing Percutaneous Coronary Intervention // Front. Cardiovasc. Med. 2022. Vol. 9. Art. No 756082. https://doi.org/10.3389/fcvm.2022.756082
Dong R., Zhang M., Hu Q., Zheng S., Soh A., Zheng Y., Yuan H. Galectin-3 as a Novel Biomarker for Disease Diagnosis and a Target for Therapy (Review) // Int. J. Mol. Med. 2018. Vol. 41, No 2. P. 599–614. https://doi.org/10.3892/ijmm.2017.3311
Чаулин А.М., Григорьева Ю.В. Галектин-3 как прогностический биомаркер сердечной недостаточности (обзор литературы) // Междунар. науч.-исслед. журн. 2021. No 2–3 (104). С. 55–60. https://doi.org/10.23670/IRJ.2021.103.2.072
Pang Z.-D., Sun X., Bai R.-Y., Han M.-Z., Zhang Y.-J., Wu W., Zhang Y., Lai B.-C., Zhang Y., Wang Y., Du X.-J., Deng X.-L. YAP-Galectin-3 Signaling Mediates Endothelial Dysfunction in Angiotensin II-Induced Hypertension in Mice // Cell. Mol. Life Sci. 2023. Vol. 80, No 2. Art. No 38. https://doi.org/10.1007/s00018-022-04623-5
Ou H.-C., Chou W.-C., Hung C.-H., Chu P.-M., Hsieh P.-L., Chan S.-H., Tsai K.-L. Galectin-3 Aggravates Ox-LDL-Induced Endothelial Dysfunction Through LOX-1 Mediated Signaling Pathway // Environ. Toxicol. 2019. Vol. 34, No 7. P. 825–835. https://doi.org/10.1002/tox.22750