Platelet Count as a Possible Predictor of Academic Success of University Students
DOI:
https://doi.org/10.37482/2687-1491-Z263Keywords:
blood cells, platelets, respiratory burst of neutrophils, predictors of academic success, academic performance, morphofunctional parameters of health, university studentsAbstract
Predicting academic success is one of the fundamental tasks of learning analytics. Generally accepted predictive criteria include academic performance. However, there is limited information about the influence of morphofunctional factors indicating the state of health in students on their academic performance. Therefore, the purpose of this study was to investigate potential predictors of learning success based on blood cell data. Materials and methods. The experiment involved 79 apparently healthy second-year students of Kursk State Medical University (mean age 18.97 ± 0.14 years), 67 % female and 33 % male. An anonymous survey was conducted using Google Forms. The following information was obtained: rating points for the first semester of studying the discipline “Histology, Embryology, Cytology”, time spent preparing for classes, and some complete blood count data (concentrations of red blood cells, white blood cells, platelets and haemoglobin; haematocrit; neutrophil and lymphocyte fractions). Depending on the points scored, the students were divided into three groups: satisfactory performance (64–79 points, n = 25), good performance (80–90 points, n = 41) and excellent performance (91– 100 points, n = 13). Results. A significant positive correlation between platelet count and rating points scored was found (r = 0.411, p = 0.00017). At the same time, platelet concentration differed significantly between the three groups of students (p = 0.002) and was higher in the group with excellent performance compared to students who demonstrated good (p = 0.007) or satisfactory (p = 0.00045) performance. One of the reasons behind the increase in platelet concentration in students with currently high academic performance may be the neuropsychic stress they experience due to a longer and more thorough preparation for classes. Thus, platelet count can be used as a predictor of students’ academic success.
Downloads
References
Озерова Г.П., Павленко Г.Ф. Прогнозирование успешности студентов при смешанном обучении с использованием данных учебной аналитики // Sci. Educ. Today. 2019. T. 9, № 6. С. 73–87. https://doi.org/10.15293/2658-6762.1906.05
Степанова И.П., Ганзина И.В., Атавина О.В., Постнова Т.В., Мугак В.В. Прогнозирование успешности обучения по химическим дисциплинам по результатам ЕГЭ в медицинском вузе // Междунар. журн. эксперим. образования. 2018. № 11. С. 17–22.
Носков М.В., Вайнштейн Ю.В., Сомова М.В., Федотова И.М. Прогностическая модель оценки успешности предметного обучения в условиях цифровизации образования // Вестн. Рос. ун-та дружбы народов. Сер.: Информатизация образования. 2023. T. 20, № 1. С. 7–19. https://doi.org/10.22363/2312-8631-2023-20-1-7-19
Харитонов И.М., Крушель Е.Г., Привалов О.О., Степанченко И.В., Степанченко О.В. Прогнозирование качества обучения в вузе с помощью методов регрессионного анализа // Изв. С.-Петерб. гос. технол. ин-та (техн. ун-та). 2021. № 56(82). С. 72–80. https://doi.org/10.36807/1998-9849-2020-56-82-72-80
Гафаров Ф.М., Руднева Я.Б., Шарифов У.Ю. Прогностическое моделирование в высшем образовании: определение факторов академической успеваемости // Высш. образование в России. 2023. T. 32, № 1. С. 51–70. https://doi.org/10.31992/0869-3617-2023-32-1-51-70
Якунин Ю.Ю., Шестаков В.Н., Ликсонова Д.И., Даничев А.А. Прогнозирование результатов обучения студентов с использованием инструментов машинного обучения // Информатика и образование. 2023. Т. 38, № 4. С. 28–43. https://doi.org/10.32517/0234-0453-2023-38-4-28-43
Мухина Н.В. Влияние физиологических и психологических показателей организма студенток среднего профессионального образования на уровень их успеваемости // Журн. мед.-биол. исследований. 2024. Т. 12, № 3. С. 338–346. https://doi.org/10.37482/2687-1491-Z206
Djordjević V.V., Kostić J., Krivokapić Ž., Krtinić D., Ranković M., Petković M., Ćosić V. Decreased Activity of Erythrocyte Catalase and Glutathione Peroxidase in Patients with Schizophrenia // Medicina (Kaunas). 2022. Vol. 58, № 10. Art. № 1491. https://doi.org/10.3390/medicina58101491
Савушкина О.К., Бокша И.С., Прохорова Т.А., Терешкина Е.Б., Бурминский Д.С., Морозова М.А., Воробьева Е.А., Бурбаева Г.Ш. Активность эритроцитарных и тромбоцитарных глутатионредуктазы и глутатион-S-трансферазы при параноидной шизофрении // Журн. неврологии и психиатрии им. C.C. Корсакова. 2018. Т. 118, № 11. С. 77–81. https://doi.org/10.17116/jnevro201811811177
Cristalli D.O., Arnal N., Marra F.A., de Alaniz M.J.T., Marra C.A. Peripheral Markers in Neurodegenerative Patients and Their First-Degree Relatives // J. Neurol. Sci. 2012. Vol. 314, № 1–2. P. 48–56. https://doi.org/10.1016/j.jns.2011.11.001
Фаткуллина Л.Д., Молочкина Е.М., Зорина О.М., Подчуфарова Д.Е., Гаврилова С.И., Федорова Я.Б., Клюшник Т.П., Бурлакова Е.Б. Показатели структуры мембраны и активность ацетилхолинэстеразы эритроцитов у пациентов с синдромом мягкого когнитивного снижения // Журн. неврологии и психиатрии им. С.С. Корсакова. 2013. Т. 113, № 6. С. 62–67.
Bower J.E., Ganz P.A., Irwin M.R., Arevalo J.M.G., Cole S.W. Fatigue and Gene Expression in Human Leukocytes: Increased NF-κB and Decreased Glucocorticoid Signaling in Breast Cancer Survivors with Persistent Fatigue // Brain Behav. Immun. 2011. Vol. 25, № 1. P. 147–150. https://doi.org/10.1016/j.bbi.2010.09.010
Burnouf T., Walker T.L. The Multifaceted Role of Platelets in Mediating Brain Function // Blood. 2022. Vol. 140, № 8. P. 815–827. https://doi.org/10.1182/blood.2022015970
Sotnikov I., Veremeyko T., Starossom S.C., Barteneva N., Weiner H.L., Ponomarev E.D. Platelets Recognize Brain-Specific Glycolipid Structures, Respond to Neurovascular Damage and Promote Neuroinflammation // PLoS One. 2013. Vol. 8, № 3. Art. № e58979. https://doi.org/10.1371/journal.pone.0058979
Dukhinova M., Kuznetsova I., Kopeikina E., Veniaminova E., Yung A.W.Y., Veremeyko T., Levchuk K., Barteneva N.S., Wing-Ho K.K., Yung W.-H., Liu J.Y.H., Rudd J., Yau S.S.Y., Anthony D.C., Strekalova T., Ponomarev E.D. Platelets Mediate Protective Neuroinflammation and Promote Neuronal Plasticity at the Site of Neuronal Injury // Brain Behav. Immun. 2018. Vol. 74. P. 7–27. https://doi.org/10.1016/j.bbi.2018.09.009
Heck N., Santos M.D. Dendritic Spines in Learning and Memory: From First Discoveries to Current Insights // Adv. Neurobiol. 2023. Vol. 34. P. 311–348. https://doi.org/10.1007/978-3-031-36159-3_7
Leiter O., Walker T.L. Platelets: The Missing Link Between the Blood and Brain? // Prog. Neurobiol. 2019. Vol. 183. Art. № 101695. https://doi.org/10.1016/j.pneurobio.2019.101695
Park C., Hahn O., Gupta S., Moreno A.J., Marino F., Kedir B., Wang D., Villeda S.A., Wyss-Coray T., Dubal D.B. Platelet Factors Are Induced by Longevity Factor Klotho and Enhance Cognition in Young and Aging Mice // Nat. Aging. 2023. Vol. 3, № 9. P. 1067–1078. https://doi.org/10.1038/s43587-023-00468-0
Schroer A.B., Ventura P.B., Sucharov J., Misra R., Chui M.K.K., Bieri G., Horowitz A.M., Smith L.K., Encabo K., Tenggara I., Couthouis J., Gross J.D., Chan J.M., Luke A., Villeda S.A. Platelet Factors Attenuate Inflammation and Rescue Cognition in Ageing // Nature. 2023. Vol. 620, № 7976. P. 1071–1079. https://doi.org/10.1038/s41586-023-06436-3
Yu H., Liu Y., He B., He T., Chen C., He J., Yang X., Wang J.-Z. Platelet Biomarkers for a Descending Cognitive Function: A Proteomic Approach // Aging Cell. 2021. Vol. 20, № 5. Art. № e13358. https://doi.org/10.1111/acel.13358
Koudouovoh-Tripp P., Sperner-Unterweger B. Influence of Mental Stress on Platelet Bioactivity // World J. Psychiatry. 2012. Vol. 2, № 6. P. 134–147. https://doi.org/10.5498/wjp.v2.i6.134