Influence of Ischemic Preconditioning Before Exercise on Performance and Blood Pressure in Men with Metabolic Syndrome
DOI:
https://doi.org/10.37482/2687-1491-Z099Keywords:
exercise tolerance, ischemic preconditioning, Borg scale, perceived exertion, post-exercise hypotension, men with metabolic syndromeAbstract
Remote ischemic preconditioning has been demonstrated in many studies to produce a positive effect on muscle performance as well as on short-term and long-term blood pressure adaptive responses. The aim of this paper was to study the effect of remote ischemic preconditioning performed before strength exercise on perceived exertion, performance levels, and arterial pressure in individuals with metabolic syndrome. Materials and methods. The study involved 30 non-exercising men (mean age 35.2 ± 6.4 years) with metabolic syndrome. The participants were divided into three groups: ischemic preconditioning + resistance training; placebo + resistance training; resistance training. We assessed the level of perceived exertion, number of repetitions in a set, as well as average and total training volume before and after the intervention (ischemic preconditioning or placebo). Systolic, diastolic and mean arterial pressure were measured before the intervention (T0), immediately after the intervention and exercise (T1), 15 min (T2) and 30 min (T3) after exercise. Results. We found that after the intervention the level of perceived exertion was statistically significantly lower, while the average number of repetitions in a set and average and total training volume were higher in the group “ischemic preconditioning + resistance training” compared to the other two groups (р ˂ 0.05). In addition, we observed a more pronounced decrease in systolic and mean arterial pressure in dynamics from T0 to T3 in the group “ischemic preconditioning + resistance training” compared to the other two groups (р ˂ 0.05). Thus, remote ischemic preconditioning used before resistance training can reduce perceived exertion, increase total training volume, and lead to more pronounced post-exercise hypotension in individuals with metabolic syndrome.
Downloads
References
Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with Ischemia: A Delay of Lethal Cell Injury in Ischemic Myocardium // Circulation. 1986. Vol. 74, № 5. P. 1124–1136. DOI: 10.1161/01.cir.74.5.1124
Marongiu E., Crisafulli A. Cardioprotection Acquired Through Exercise: The Role of Ischemic Preconditioning // Curr. Cardiol. Rev. 2014. Vol. 10, № 4. P. 336–348. DOI: 10.2174/1573403x10666140404110229
Wiggins C.C., Constantini K., Paris H.L., Mickleborough T.D., Chapman R.F. Ischemic Preconditioning, O2 Kinetics, and Performance in Normoxia and Hypoxia // Med. Sci. Sports Exerc. 2019. Vol. 51, № 5. P. 900–911. DOI: 10.1249/MSS.0000000000001882
Marocolo M., Simim M.A.M., Bernardino A., Monteiro I.R., Patterson S.D., da Mota G.R. Ischemic Preconditioning and Exercise Performance: Shedding Light Through Smallest Worthwhile Change // Eur. J. Appl. Physiol. 2019. Vol. 119, № 10. P. 2123–2149. DOI: 10.1007/s00421-019-04214-6
Salvador A.F., De Aguiar R.A., Lisbôa F.D., Pereira K.L., Cruz R.S., Caputo F. Ischemic Preconditioning and Exercise Performance: A Systematic Review and Meta-Analysis // Int. J. Sports Physiol. Perform. 2016. Vol. 11, № 1. P. 4–14. DOI: 10.1123/ijspp.2015-0204
Incognito A., Burr J.F., Millar P.J. The Effects of Ischemic Preconditioning on Human Exercise Performance // Sports Med. 2016. Vol. 46, № 4. P. 531–544. DOI: 10.1007/s40279-015-0433-5
Halley S.L., Marshall P., Siegler J.C. The Effect of IPC on Central and Peripheral Fatiguing Mechanisms in Humans Following Maximal Single Limb Isokinetic Exercise // Physiol. Rep. 2019. Vol. 7, № 8. Art. № e14063. DOI: 10.14814/phy2.14063
Weavil J., Amann M. Neuromuscular Fatigue During Whole Body Exercise // Curr. Opin. Physiol. 2019. Vol. 10. P. 128–136. DOI: 10.1016/j.cophys.2019.05.008
Powers S.K., Deminice R., Ozdemir M., Yoshihara T., Bomkamp M.P., Hyatt H. Exercise-Induced Oxidative Stress: Friend or Foe? // J. Sport Health Sci. 2020. Vol. 9, № 5. P. 415–425. DOI: 10.1016/j.jshs.2020.04.001
Welch A.S., Hulley A., Ferguson C., Beauchamp M.R. Affective Responses of Inactive Women to a Maximal Incremental Exercise Test: A Test of the Dual-Mode Model // Psychol. Sport Exerc. 2007. Vol. 8, № 4. P. 401–423. DOI: 10.1016/j.psychsport.2006.09.002
Tong X.Z., Cui W.F., Li Y., Su C., Shao Y.J., Liang J.W., Zhou Z.T., Zhang C.J., Zhang J.N., Zhang X.Y., Xia W.H., Tao J. Chronic Remote Ischemic Preconditioning-Induced Increase of Circulating hSDF-1α Level and Its Relation with Reduction of Blood Pressure and Protection Endothelial Function in Hypertension // J. Hum. Hypertens. 2019. Vol. 33, № 12. P. 856–862. DOI: 10.1038/s41371-018-0151-1
Panza P., Novaes J., Telles L.G., Campos Y., Araújo G., Neto N., Raider L., Novaes G., Leitão L., Vianna J. Ischemic Preconditioning Promotes Post-Exercise Hypotension in a Session of Resistance Exercise in Normotensive Trained Individuals // Int. J. Environ. Res. Public Health. 2019. Vol. 17, № 1. Art. № 78. DOI: 10.3390/ijerph17010078
Alberti K.G.M.M., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.-C., James W.P.T., Loria C.M., Smith S.C. Jr. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity // Circulation. 2009. Vol. 120, № 16. P. 1640–1645. DOI: 10.1161/CIRCULATIONAHA.109.192644
LeSuer D.A., McCormick J.H., Mayhew J.L., Wasserstein R.L., Arnold M.D. The Accuracy of Prediction Equations for Estimating 1-RM Performance in the Bench Press, Squat, and Deadlift // J. Strength Condit. Res. 1997. Vol. 11, № 4. P. 211–213.
Williams N. The Borg Rating of Perceived Exertion (RPE) Scale // Occup. Med. 2017. Vol. 67, iss. 5. P. 404–405. DOI: 10.1093/occmed/kqx063
Tanaka D., Suga T., Tanaka T., Kido K., Honjo T., Fujita S., Hamaoka T., Isaka T. Ischemic Preconditioning Enhances Muscle Endurance During Sustained Isometric Exercise // Int. J. Sports Med. 2016. Vol. 37, № 8. P. 614–618. DOI: 10.1055/s-0035-1565141
Behrens M., Zschorlich V., Mittlmeier T., Bruhn S., Husmann F. Ischemic Preconditioning Did Not Affect Central and Peripheral Factors of Performance Fatigability After Submaximal Isometric Exercise // Front. Physiol. 2020. № 11. Art. № 371. DOI: 10.3389/fphys.2020.00371
Nir R.-R., Yarnitsky D. Conditioned Pain Modulation // Curr. Opin. Support. Palliat. Care. 2015. Vol. 9, № 2. P. 131–137. DOI: 10.1097/SPC.0000000000000126
Schroeder C.A. Jr., Lee H.T., Shah P.M., Babu S.C., Thompson C.I., Belloni F.L. Preconditioning with Ischemia or Adenosine Protects Skeletal Muscle from Ischemic Tissue Reperfusion Injury // J. Surg. Res. 1996. Vol. 63, № 1. P. 29–34. DOI: 10.1006/jsre.1996.0217
Wilk M., Krzysztofik M., Jarosz J., Krol P., Leznicka K., Zajac A., Stastny P., Bogdanis G.С. Impact of Ischemic Intra-Conditioning on Power Output and Bar Velocity of the Upper Limbs // Front. Physiol. 2021. № 12. Art. № 626915. DOI: 10.3389/fphys.2021.626915
Cruz R.S., Pereira K.L., Lisbôa F.D., Caputo F. Could Small-Diameter Muscle Afferents Be Responsible for the Ergogenic Effect of Limb Ischemic Preconditioning? // J. Appl. Physiol. (1985). 2017. Vol. 122, № 3. P. 718–720. DOI: 10.1152/japplphysiol.00662.2016
Angius L., Crisafulli A., Hureau T.J., Broxterman R.M., Amann M., Incognito A.V., Burr J.F., Millar P.J., Jones H., Thijssen D.J., Patterson S.D., Jeffries O., Waldron M., Silva B.M., Lopes T.R., Vianna L.C., Smith J.R., Copp S.W., Van Guilder G.P., Zuo L., Chuang C.-C. Commentaries on Viewpoint: Could Small-Diameter Muscle Afferents Be Responsible for the Ergogenic Effect of Limb Ischemic Preconditioning? // J. Appl. Physiol. (1985). 2017. Vol. 122, № 3. P. 721–725. DOI: 10.1152/japplphysiol.00030.2017
McNulty P.A., Macefield V.G., Taylor J.L., Hallett M. Cortically Evoked Neural Volleys to the Human Hand Are Increased During Ischaemic Block of the Forearm // J. Physiol. 2002. Vol. 538, № 1. P. 279–288. DOI: 10.1113/jphysiol.2001.013200
Madias J.Е. Effect of Serial Arm Ischemic Preconditioning Sessions on the Systemic Blood Pressure of a Normotensive Subject // Med. Hypotheses. 2011. Vol. 76, № 4. P. 503–506. DOI: 10.1016/j.mehy.2010.12.002
Baffour-Awuah B., Dieberg G., Pearson M.J., Smart N.A. The Effect of Remote Ischaemic Conditioning on Blood Pressure Response: A Systematic Review and Meta-Analysis // Int. J. Cardiol. Hypertens. 2021. Vol. 8. Art. № 100018. DOI: 10.1016/j.ijchy.2021.100081
Pires N.F., Coelho-Júnior H.J., Gambassi B.B., de Faria A.P.C., Ritter A.M.V., de Andrade Barboza C., Ferreira-Melo S.E., Rodrigues B., Júnior H.M. Combined Aerobic and Resistance Exercises Evokes Longer Reductions on Ambulatory Blood Pressure in Resistant Hypertension: A Randomized Crossover Trial // Cardiovasc. Ther. 2020. Vol. 2020. Art. № 8157858. DOI: 10.1155/2020/8157858
Machado M.V., Barbosa T.P.C., Chrispino T.C., Junqueira das Neves F., Rodrigues G.D., Soares P.P.D.S., da Nóbrega A.C.L. Cardiovascular and Autonomic Responses After a Single Bout of Resistance Exercise in Men with Untreated Stage 2 Hypertension // Int. J. Hypertens. 2021. Vol. 2021. Art. № 6687948. DOI: 10.1155/2021/6687948
Billah M., Ridiandries A., Allahwala U., Mudaliar H., Dona A., Hunyor S., Khachigian L.М., Bhindi R. Circulating Mediators of Remote Ischemic Preconditioning: Search for the Missing Link Between Non-Lethal Ischemia and Cardioprotection // Oncotarget. 2019. Vol. 10, № 2. P. 216–244. DOI: 10.18632/oncotarget.26537