Surface Treatment of Cardboard with Plant and Bacterial Derived Nanocellulose Suspensions

Authors

DOI:

https://doi.org/10.37482/0536-1036-2023-3-162-172

Keywords:

powdered cellulose materials, nanocrystalline cellulose, nanofibrillar cellulose, bacterial nanocellulose, freeness value, degree of polymerization, structural and morphological characteristics

Abstract

This study investigates powdered cellulose materials, particularly nanocellulose derived from plant and bacterial sources. The nanocellulose was generated by hydrolyzing bleached sulphate softwood and hardwood pulp samples with strong acids. The original materials are present in the product lines of leading Russian pulp and paper companies. The bacterial cellulose was produced under laboratory conditions from Medusomyces gisevii. The dimensional parameters of the nanocellulose samples were evaluated using electron microscopy, and the degree of polymerization was measured by determining the viscosity of the cellulose solutions in cadoxene. The bleached softwood pulp had a nanocellulose particle length of 80–200 nm, a particle diameter of 80–100 nm, and a degree of polymerization of 60. The bleached hardwood pulp had a particle length of 80–150 nm, a particle diameter of 70–100 nm, and a degree of polymerization of 50. The bacterial nanocellulose had a particle length of 120–250 nm, a particle diameter of 70–120 nm, and a degree of polymerization of 110. Suspensions of various concentrations (from 1 to 10 %) were prepared from nanocellulose samples, which were subsequently used as reinforcing additives in cardboard samples. The additive was applied to the surface in one or two layers. Additives of nanocellulose preparations reduced the breaking length (from 9.6 to 40.4 %) along with an increase in cardboard density (from 6.3 to 23.8 %), tensile rigidity (from 14.0 to 25.0 %) and bursting strength (up to 31.9 %). The best results were obtained by applying a nanocellulose suspension of bleached softwood pulp to the board surface in two layers: a 9.6 % decrease in breaking length was observed with an increase in density of 23.8 %, tensile rigidity of 25.0 %, and bursting resistance of 31.9 % relative to the control sample. Therefore, the study showed the possibility of using nanocellulose suspensions derived from plants and bacterial sources by acid hydrolysis for the surface treatment of cardboard.
For citation: Toptunov Е.А., Sevastyanova Yu.V., Vashukova K.S. Surface Treatment of Cardboard with Plant and Bacterial Derived Nanocellulose Suspensions. Lesnoy Zhurnal = Russian Forestry Journal, 2023, no. 3, pp. 162–172. (In Russ.). https://doi.org/10.37482/0536-1036-2023-3-162-172

Downloads

Download data is not yet available.

Author Biographies

Еvgeniy А. Toptunov, Northern (Arctic) Federal University named after M.V. Lomonosov

Engineer; ResearcherID: ABE-4069-2020

Yuliya V. Sevastyanova, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Engineering, Assoc. Prof.; ResearcherID: ABE-4746-2020

Ksenia S. Vashukova, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Engineering, Assoc. Prof.; ResearcherID: G-1760-2019

References

Воскобойников И.В., Кондратюк В.А., Никольский С.Н., Константинова С.А., Коротков А.Н. Применение гидрогелей наноцеллюлозы при формовании бумаги и картона из различных видов волокнистого сырья // Вестн. МГУЛ – Лесной вестн. 2012. № 8. С. 110–116. Voskoboynikov I.V., Kondratyuk V.A., Nikolskiy S.N., Konstantinova S.A., Korotkov A.N. Application of Nanocellulose Hydrogels in the Formation of Paper, and Cardboard from Different Types of Fibrous Raw Materials. Lesnoj vestnik = Forestry Bulletin, 2012, no. 8, pp. 110–116. (In Russ.).

Гисматулина Ю.А., Будаева В.В., Ситникова А.Е., Бычин Н.В., Гладышева Е.К., Шавыркина Н.А., Миронова Г.Ф., Севастьянова Ю.В. Композиционная бумага из бактериальной наноцеллюлозы и хвойной целлюлозы // Изв. вузов. Прикладная химия и биотехнология. 2021. Т. 11, № 3. С. 460–471. Gismatulina Yu.A., Budaeva V.V., Sitnikova A.E., Bychin N.V., Gladysheva E.K., Shavyrkina N.A., Mironova G.F., Sevastyanova Yu.V. Bacterial Nanocellulose and Softwood Pulp for Composite Paper. Izvestiya vuzov. Prikladnaya ximiya i biotexnologiya. = Proceedings of Universities Applied Chemistry and Biotechnology, 2021, vol. 11, no. 3, pp. 460–471. (In Russ.). https://doi.org/10.21285/2227-2925-2021-11-3-460-471

Зарубина А.Н., Иванкин А.Н., Кулезнев А.С., Кочетков В.А. Целлюлоза и наноцеллюлоза. Обзор // Лесн. вестн. / Forestry Bulletin. 2019. Т. 23, № 5. С. 116–125. Zarubina A.N., Ivankin A.N. Kuleznev A.S., Kochetkov V.A. Сellulose and Nanocellulose. Review. Lesnoj vestnik = Forestry Bulletin, 2019, vol. 23, no. 5, pp. 116–125. (In Russ.). https://doi.org/10.18698/2542-1468-2019-5-116-125

Иоелович М.Я. Оптимизация процесса получения нанокристаллической целлюлозы и композитов на ее основе // Химия растит. сырья. 2021. № 1. С. 55–61. Ioelovich M.Ya. Optimization of Process for Production of Nanocrystalline Cellulose and Its Composites. Khimiya Rastitel’nogo Syr’ya = Chemistry of Plant Raw Material, 2021, no. 1, pp. 55–61 (In Russ.). https://doi.org/10.14258/jcprm.2021018667

Кузнецова Т.Г., Селиванова Е.Б., Богданова А.В., Иванкин А.Н. Наноидентификация нанообъектов в составе сырья и продуктов пищевого назначения // Экол. системы и приборы. 2012. № 2. С. 18–22. Kuznetsova T.G., Selivanova E.B., Bogdanova A.V., Ivankin A.N. Nanoidentification Nanocomposite in Raw Materials and Food Products. Ekologicheskiye sistemy i pribory = Ecological Systems and Devices, 2012, no. 2, pp. 18–22. (In Russ.).

Прошина О.П., Олиференко Г.Л., Евдокимов Ю.М., Иванкин А.Н. Наноцеллюлоза и получение бумаги на ее основе // Нанотехнологии и наноматериалы в лесном комплексе: тез. докл. Междунар. конф., Москва, 15–17 нояб. 2011 г., М.: МГУЛ, 2011. С. 24–28. Proshina O.P., Oliferenko G.L., Evdokimov Yu.M., Ivankin A.N. Nano-Cellulose and Reception of a Paper on Its Basis. Nanotechnologies and Nanomaterials in the Forest Complex: Proceedings of the International Conference, Moscow, 15–17 November 2011. Moscow, BMSTU Publ., 2011, pp. 24–28. (In Russ.).

Семкина Л.И., Сарана Н.В., Лепешкина Е.В., Товстошкуров Е.М., Горячев Н.Л., Тюрин Е.Т., Зуйков А.А., Константинова С.А., Новиков А.А. Применение нанофибриллярной целлюлозы в композиции бумаги для гофрирования // Лесн. вестн. / Forestry Bulletin. 2020. Т. 24, № 2. С. 119–126. Semkina L.I., Sarana N.V., Lepeshkina E.V., Tovstoshkurov E.M., Goraychev N.L., Tyurin E.T., Zuikov A.A., Konstantinova S.A., Novikov A.A. Nanofibrillated Cellulose in Corrugating Paper Composition. Lesnoj vestnik = Forestry Bulletin, 2020, vol. 24, no. 2, pp. 119–126. (In Russ.). https://doi.org/10.18698/2542-1468-2020-2-119-126

Топтунов Е.А., Севастьянова Ю.В. Порошковые целлюлозные материалы: обзор, классификация, характеристики и области применения // Химия растит. сырья. 2021. № 4. С. 31–45. Toptunov E.A., Sevastyanova Yu.V. Powdered Cellulosic Materials: Overview, Classification, Characteristics and Fields of Application. Khimiya Rastitel’nogo Syr’ya = Chemistry of Plant Raw Material, 2021, no. 4, pp. 31–45. (In Russ.). https://doi.org/10.14258/jcprm.2021049186

Тюрин Е.Т., Зуйков А.А., Бондарев А.И., Гульянц Е.П., Фадеева Л.А., Константинова С.А., Новиков А.А., Аникушин Б.М., Винокуров В.А. Проведение испытаний экспериментальных образцов нанофибриллярной целлюлозы в производстве легкомелованной бумаги // Лесн. вестн. / Forestry Bulletin. 2021. Т. 25, № 2. С. 90–98. Tyurin E.T., Zuikov A.A., Bondarev A.I., Gulyanz L.P., Fadeeva L.A., Konstantinova S.A., Novikov A.A., Anikuchin B.M., Vinokurov V.A. Testing of Experimental Samples of Nanofibrillar Cellulose in the Production of Lightweight Coated Paper. Lesnoj vestnik = Forestry Bulletin, 2021, vol. 25, no. 2, pp. 90–98. (In Russ.). https://doi.org/10.18698/2542-1468-2021-2-90-98

Abitbol T., Amit R., Yifeng C., Yuval N., Eldho A., Tal B.-S., Shaul L., Oded S. Nanocellulose, a Tiny Fiber with Huge Applications. Current Opinion in Biotechnology, 2016, vol. 39, pp. 76–88. https://doi.org/10.1016/j.copbio.2016.01.002

Bras J., Hassan M.L., Bruzesse C., Hassan E.A., El-Wakil N.A., Dufresne A. Mechanical, Barrier, and Biodegradability Properties of Bagasse Cellulose Whiskers Reinforced Natural Rubber Nanocomposites. Industrial Crops and Products, 2010, vol. 32, no. 3, pp. 627–633. https://doi.org/10.1016/j.indcrop.2010.07.018

Camarero Espinosa S., Kuhnt T., Foster E.J., Weder C. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules, 2013, vol. 14, no. 4, pp. 1223–1230. https://doi.org/10.1021/bm400219u

Grinshpan D.D., Gonchar A.N., Savitskaya T.A., Tsygankova N.G., Makarevich S.E. Rheological Properties of Cellulose-Chitosan-Phosphoric Acid Systems in Different Phase States. Polymer Science, Series A, 2014, vol. 56, no. 2, pp. 137–145. https://doi.org/10.1134/S0965545X14020059

Hayase G., Kanamori K., Hasegawa G., Maeno A., Kaji H., Nakanishi K. A Superamphiphobic Macroporous Silicone Monolith with Marshmallow-Like Flexibility. Angewandte Chemie, 2013, vol. 52, no. 41, pp. 10788–10791. https://doi.org/10.1002/anie.201304169

Jorfi M., Foster J.E. Recent Advances in Nanocellulose for Biomedical Applications. Journal of Applied Polymer Science, 2015, vol. 132, no. 14, рр. 1–19. https://doi.org/10.1002/app.41719

Lin N., Dufresne A. Nanocellulose in Biomedicine: Current Status and Future Prospect. European Polymer Journal, 2014, vol. 59, pp. 302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025

Liu K., Tian Y., Jiang L. Bio-Inspired Superoleophobic and Smart Materials: Design, Fabrication, and Application. Progress in Materials Science, 2013, vol. 58, no. 4, pp. 503–564. https://doi.org/10.1016/j.pmatsci.2012.11.001

Moon R.J., MartiniA., Nairn J., Simonsen J., Youngblood J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chemical Society Reviews, 2011, vol. 40, no. 7, pp. 3941–3994. https://doi.org/10.1039/c0cs00108b

Revol J.F., Bradford H., Giasson J., Marchessault R.H., Gray D.G. Helicoidal Self-Ordering of Cellulose Microfibrils in Aqueous Suspension. International Journal of Biological Macromolecules, 1992, vol. 14, no. 3, pp. 170–172. https://doi.org/10.1016/S0141-8130(05)80008-X

Robles E., Urruzola I., Labidi J., Serrano L. Surface-Modified Nano-Cellulose as Reinforcement in Poly (Lactic Acid) to Conform New Composites. Industrial Crops and Products, 2015, vol. 71, pp. 44–53. https://doi.org/10.1016/j.indcrop.2015.03.075

Si Y., Guo Z. Superhydrophobic Nanocoatings: From Materials to Fabrications and to Applications. Nanoscale, 2015, vol. 7, no. 14, pp. 5922–5946. https://doi.org/10.1039/C4NR07554D

Siqueira G., Bras J., Dufresne A. Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers, 2010, vol. 2, no. 4, pp. 728–765. https://doi.org/10.3390/polym2040728

Wei H., Rodriguez K., Renneckar S., Vikesland P.J. Environmental Science and Engineering Applications of Nanocellulose-Based Nanocomposites. Environmental Science. Nano, 2014, vol. 1, no. 4, pp. 302–316. https://doi.org/10.1039/C4EN00059E

Published

2023-06-15

How to Cite

Toptunov Е., Sevastyanova Ю., and Vashukova К. “Surface Treatment of Cardboard With Plant and Bacterial Derived Nanocellulose Suspensions”. Lesnoy Zhurnal (Forestry Journal), no. 3, June 2023, pp. 162-7, doi:10.37482/0536-1036-2023-3-162-172.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES

Most read articles by the same author(s)