Calorific Value of the Degraded Stem Wood of Spruce Picea abies (L.)
DOI:
https://doi.org/10.37482/0536-1036-2025-6-179-188Keywords:
calorific value, spruce, wood, stem, corrosive rot, destructive rotAbstract
The popularity of bioenergy is increasing in the light of the development of the green economy and the desire to achieve carbon neutrality in production. In this regard, various types of energy raw materials, their properties and waste disposal possibilities are being considered. The purpose of the study has been to assess the calorific value of spruce wood damaged by wood-destroying fungi. An automated ABK-1B bomb calorimeter has been used to measure the calorific value of spruce stem wood. Separately, pellets have been pressed from wood, bark and knots and dried in a drying cabinet at a temperature of 105 °C. The pellets have been burned in a completely dry state. The ash weight has been determined as the difference between the weight of the crucible with residues after combustion of the sample in a calorimeter bomb and the weight of the empty crucible. The calorific value of healthy spruce wood is 20,180–20,232 J/g. In the cross section of the spruce stem, the calorific value varies in the range from 18,900 to 21,700 J/g. The lowest values are typical for the pre-edge zone of the degraded wood. Wood damaged by corrosive rot has a lower heat capacity compared to healthy wood by 1.5–6.2 % (18,926–19,868 J/g). The calorific value of wood damaged by destructive rot exceeds that of healthy wood by 1.5–10.5 % (20,487–22,301 J/g). As the stage of destructive rot of spruce wood increases, its calorific value grows. The calorific value of pellets from degraded spruce wood can be estimated by their appearance. The yellow and mottled colors of the pressed raw material indicate a significantly lower calorific value compared to pellets of brown and orange colors. The ash content of degraded wood of different types is at the same level. The ash content of wood damaged by stage 3 corrosive rot is significantly higher than that of healthy wood and wood at previous stages of decomposition by 96–129 %. The calorific value of the bark of spruce stems damaged by rot is at the level of the calorific value of healthy wood, and the ash content is 3 times higher. The calorific value of a knot is 7 % higher than that of healthy wood, while the ash content remains at the same level.
Downloads
References
Доклад. Состояние и охрана окружающей среды Архангельской области за 2023 год / отв. ред. Э.В. Шашин. Архангельск: 2024. 505 с. Report: Environmental Status and Protection in the Arkhangelsk Region in 2023. Ed. by E.V. Shashin. Arkhangelsk, 2024. 505 p. (In Russ.).
Коптев С.В. Фаутность северотаежных ельников // Изв. вузов. Лесн. журн. 1992. № 2. С. 20–26. Koptev S.V. Fautiness of North Taiga Spruce Forests. Lesnoy Zhurnal = Russian Forestry Journal, 1992, no. 2, pp. 20–26. (In Russ.).
Кулак М.И., Федоренчик А.С., Леонов Е.А. Прогнозирование хранения запасов топлива в условиях лесоэнергетических терминалов // Наука и инновации. 2012. № 7(113). С. 69–72. Kulak M.I., Fedorenchik A.S., Leonov E.A. Forecasting the Storage of Fuel Reserves in Forest Energy Terminals. Nauka i innovatsii = Science and Innovations, 2012, no. 7(113), pp. 69–72. (In Russ.).
Лебедев А.В., Иванова Э.А. Патология ели в древостоях разного состава // Изв. вузов. Лесн. журн. 2001. № 3. С. 47–50. Lebedev A.V., Ivanova E.A. Spruce Pathology in the Stands of Different Composition. Lesnoy Zhurnal = Russian Forestry Journal, 2001, no. 3, pp. 47–50. (In Russ.).
Леонов Е.А., Клоков Д.В., Гарабажиу А.А., Духовник А.А. Влияние сроков хранения древесного сырья и топливной щепы на их теплотворную способность // Тр. БГТУ. 2020. Сер. 1, № 2. С. 186–191. Leonov E.A., Klokov D.V., Garabazhiu A.A., Dukhovnik A.A. Influence of the Wood Raw Materials and Fuel Chips Storage Terms on Their Heating Ability. Trudy BGTU = Proceedings of BSTU, 2020, series 1, no. 2, pp. 186–191. (In Russ.).
Остроухова Л.А., Федорова Т.Е., Онучина Н.А., Левчук А.А., Бабкин В.А. Определение количественного содержания экстрактивных веществ из древесины, корней и коры деревьев хвойных видов сибири: лиственницы (Larix sibirica L.), сосны (Pinus sylvestris L.), пихты (Abies sibirica L.), ели (Picea obovata L.) и кедра (Pinus sibirica Du Tour.) // Химия растит. сырья. 2018. № 4. С. 185–195. Ostroukhova L.A., Fedorova T.E., Onuchina N.A., Levchuk A.A., Babkin V.A. Determination of the Quantitative Content of Extractives from Wood, Roots and Bark of Coniferous Trees in Siberia: Larch (Larix sibirica L.), Pines (Pinus sylvestris L.), Fir (Abies sibirica L.), Spruce (Picea obovata L.) and Cedar (Pinus sibirica Du Tour.). Khimija Rastitel’nogo Syr’ja, 2018, no. 4, pp. 185–195. (In Russ.). https://doi.org/10.14258/jcprm.2018044245
Рипачек В. Биология дереворазрушающих грибов. М.: Лесн. пром-сть, 1967. 276 с. Ripachek V. Biology of Wood-Destroying Fungi. Moscow, Lesnaya promyshlennost’ Publ., 1967. 276 p. (In Russ.).
Серков Б.Б., Сивенков А.Б., Тхань Б.Д., Асеева Р.М. Тепловыделение при горении древесины // Лесн. вестн. 2003. № 5. С. 74–79. Serkov B.B., Sivenkov A.B., Than’ B.D., Aseeva R.M. Heat Release during Wood Combustion. Lesnoy vestnik = Forestry Bulletin, 2003, no. 5, pp. 74–79. (In Russ.).
Стороженко В.Г. Состояние и пораженность дереворазрушающими грибами коренных ельников подзоны северной тайги // Тр. КарНЦ РАН. 2013. № 6. С. 153–158. Storozhenko V.G. The Condition and Scope of Damage by Wood-Attacking Fungi in North Taiga Pristine Spruce Forests. Trudy Karel’skogo nauchnogo tsentra Rossijskoj akademii nauk = Proceedings of the Karelian Research Centre of the Russian Academy of Sciences, 2013, no. 6, pp. 153–158. (In Russ.).
Стороженко В.Г., Засадная В.А. Структура древесного отпада девственных ельников северной и южной тайги Европейской части России // Сиб. лесн. журн. 2019. № 2. С. 64–73. Storozhenko V.G., Zasadnaya V.A. Structure of Woody Debris of Virgin Spruce Forests of the Northern and Southern Taiga in the European Part of Russia. Sibirskij lesnoj zhurnal = Siberian Journal Forest Science, 2019, no. 2, pp. 64–73. (In Russ.). https://doi.org/10.15372/SJFS20190206
Тюкавина О.Н. Направления использования сосновых горельников // Лесная наука современности: материалы VI Мелеховских науч. чтений, посвящ. 115-летию со дня рождения выдающегося ученого-лесовода, акад. Ивана Степановича Мелехова. Архангельск: САФУ, 2020. С. 62–69. Tyukavina O.N. Directions for the Use of Pine Burnt Wood. Modern Forest Science: Proceedings of the VI Melekhov Scientific Readings Dedicated to the 115th Anniversary of the Birth of the Outstanding Scientist-Forester, Academician Ivan Stepanovich Melekhov. Arkhangelsk, Northern (Arctic) Federal University Publ., 2020, pp. 62–69. (In Russ.).
Тюкавина О.Н., Клевцов Д.Н., Мелехов В.И., Неверов Н.А. Теплотворная способность фракций надземной фитомассы культур сосны обыкновенной в условиях Северо-таежного лесного района // Лесн. вестн. / Forestry Bulletin. 2024. Т. 28, № 2. С. 27–33. Tyukavina O.N., Klevtsov D.N., Melekhov V.I., Neverov N.A. Calorific Value of Aerial Phytomass Fractions of Scots Pine in North Taiga Forest Region. Lesnoy vestnik = Forestry Bulletin, 2024, vol. 28, no. 2, pp. 27–33. (In Russ.). https://doi.org/10.18698/2542-1468-2024-2-27-33
Тюкавина О.Н., Корепин Д.Ю. Теплотворная способность стволов ели при поражении их еловой губкой // Леса России: политика, промышленность, наука, образование: материалы IX Всерос. науч.-техн. конф. СПб.: СПбГЛТУ, 2024. С. 210–212. Tyukavina O.N., Korepin D.Yu. Calorific Value of Spruce Trunks when They are Affected by a Spruce Sponge. Forests of Russia: Politics, Industry, Science, Education: Proceedings of the IX All-Russian Scientific and Technical Conference. St. Petersburg, St. Petersburg State Forestry University Publ., 2024, pp. 210–212. (In Russ.).
Тюкавина О.Н., Кунников Ф.А., Кошелева А.Е. Влияние гнили на распределение минеральных элементов в древесине тополя бальзамического // Изв. С.-Петерб. лесотехн. акад. 2016. № 214. С. 105–119. Tyukavina O.N., Kunnikov F.A., Kosheleva A.E. The Influence of Rot on the Distribution of Mineral Elements in Balsam Poplar Wood. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii, 2016, no. 214, pp. 105–119. (In Russ.).
Apraku S.E., Shen Y. Biomass Pellet Fuel Production and Utilization in Ghana: A Review. ACS Sustainable Resource Management, 2024, vol. 1, iss. 4, pp. 586–603. https://doi.org/10.1021/acssusresmgt.3c00121
Gendek A., Aniszewska M., Owoc D., Tamelová B., Malaťák J., Velebil J., Krilek J. Physico-Mechanical and Energy Properties of Pellets Made from Ground Walnut Shells, Coniferous Tree Cones and Their Mixtures. Renewable Energy, 2023, vol. 122, pp. 248–258. https://doi.org/10.1016/j.renene.2023.04.122
Gendek A., Piętka J., Aniszewska M., Malaťák J., Velebil J., Tamelová B., Krilek J., Moskalik T. Energy Value of Silver Fir (Abies alba) and Norway Spruce (Picea abies) Wood Depending on the Degree of its Decomposition by Selected Fungal Species. Renewable Energy, 2023, vol. 215, art. no. 118948. https://doi.org/10.1016/j.renene.2023.118948
Gonçalves A.C., Malico I., Sousa A.M.O. Energy Production from Forest Biomass: An Overview. Forest Biomass – From Trees to Energy, IntechOpen, 2021, pp. 1–23. https://doi.org/10.5772/intechopen.93361
Sui H., Chen J., Cheng W., Zhu Y., Zhang W., Hu J., Jiang H., Shao J., Chen H. Effect of Oxidative Torrefaction on Fuel and Pelletizing Properties of Agricultural Biomass in Comparison with Non-Oxidative Torrefaction. Renewable Energy, 2024, vol. 226, art. no. 120423. https://doi.org/10.1016/j.renene.2024.120423
He H., Wang W., Sun Y., Sun W., Wu K. From Raw Material Powder to Solid Fuel Pellet: A State-of-the-Art Review of Biomass Densification. Biomass and Bioenergy, 2024, vol. 186, art. no. 107271. https://doi.org/10.1016/j.biombioe.2024.107271
Krajnc N. Wood Fuels Handbook. Pristina, Food and Agriculture Organization of the United Nations, 2015. 31 p.
Librenti I., Ceotto E., Di Candilo M. Biomass Characteristics and Energy Contents of Dedicated Lignocellulose Crops. Proceedings of the Third International Symposium on Energy from Biomass and Waste. Italy, Venice, 2010. 8 p.
Nasser R.A., Aref I.M. Fuelwood Characteristics of Six Acacia Species Growing Wild in the Southwest of Saudi Arabia as Affected by Geographical Location. BioResources, 2014, vol. 9, iss. 1, pp. 1212–1224. https://doi.org/10.15376/biores.9.1.1212-1224
Petráš R., Mecko J., Kukla J., Kuklová M., Krupová D., Pástor M., Raček M., Pivková I. Energy Stored in Above-Ground Biomass Fractions and Model Trees of the Main Coniferous Woody Plants. Sustainability, 2021, vol. 13, no. 22, art. no. 12686. https://doi.org/10.3390/su132212686
Piętka J., Gendek A., Malaťák J., Velebil J., Moskalik T. Effects of Selected WhiteRot Fungi on the Calorific Value of Beech Wood (Fagus sylvatica L.). Biomass and Bioenergy, 2019, vol. 127, art. no. 105290. https://doi.org/10.1016/j.biombioe.2019.105290
Zeng W.-s., Tang S.-z., Xiao Q.-h. Calorific Values and Ash Contents of Different Parts of Masson Pine Trees in Southern China. Journal of Forestry Research, 2014, vol. 25, pр. 779-786. https://doi.org/10.1007/s11676-014-0525-3






