Generic Models of Willow (genus Salix L.) Tree Phytomass: a Meta-Analysis

Authors

DOI:

https://doi.org/10.37482/0536-1036-2024-5-64-75

Keywords:

Salix L., stem phytomass, aboveground phytomass, phytomass fractions, generic model, meta-analysis, regression analysis

Abstract

Climate change has a negative impact on the environment, including forest ecosystems. However, forests are not only passive objects affected by climate change, but also, due to their ability to absorb and accumulate carbon, they themselves can significantly influence this process. Carbon sequestration by forest ecosystems plays an important role in mitigating the effects of climate change. Therefore, it is necessary to know about the amount of carbon stored in forest phytomass, and it is becoming increasingly important to accurately determine the phytomass of forest trees. Due to the absorption of carbon dioxide during plant growth and its release during wood burning, forests are a carbon-neutral energy source. The idea of using phytomass as an energy source to replace fossil fuels is most promising for fast-growing species. These include willows (genus Salix L.), native to Europe, Asia, America and Africa and found from the tundra to the tropics. Willow is successfully used as fuel in many countries, showing excellent growth and productivity even at juvenile stages and, under certain climatic conditions, having the highest capacity among woody plants to convert solar radiation into phytomass. Short-rotation willow plantations represent an ecologically promising energy resource for reducing greenhouse gas levels. Since the development of phytomass models is a laborious process, so-called “generic meta-models” are used. The aim of this study has been to construct generic models of both aboveground phytomass and phytomass fractions (foliage, branches, stem, roots) of willow trees based on meta-analysis of data. In the course of the work, the models have been constructed for assessing the aboveground phytomass of trees both in diameter at the stem base and in diameter at breast height, the information content of which is close to functional, and the biases are only about 2 %. Since each fraction of phytomass has a specific carbon-sequestering capacity and makes a different contribution to the carbon balance, generic models have been developed to estimate the mass of foliage, branches, stems and roots in relation to the aboveground phytomass of trees, explaining from 82 % (for foliage) to 99 % (for stems and roots) of the total variability of phytomass.

Downloads

Download data is not yet available.

Author Biographies

Andrey А. Paramonov, Northern Research Institute of Forestry

Candidate of Agriculture

Vladimir A. Usoltsev, Ural State Forest Engineering University, Botanical Garden of the Ural Branch of the RAS

Doctor of Agriculture, Prof.

Sergey V. Tretyakov, Northern Research Institute of Forestry, Northern (Arctic) Federal University named after M.V. Lomonosov

Doctor of Agriculture, Prof.

Ilya V. Tsvetkov, Northern Research Institute of Forestry, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Agriculture

Ivan S. Tsepordey, Botanical Garden of the Ural Branch of the RAS

Candidate of Agriculture, Research Scientist

References

Анциферов Г.И. Ива. М.: Лесн. пром-сть, 1984. 101 с. Antsiferov G.I. Willow. Moscow, Lesnaya promyshlennost’ Publ., 1984. 101 p. (In Russ.).

Гусев И.И. Моделирование экосистем. Архангельск: АГТУ, 2002. 112 c. Gusev I.I. Ecosystem Modeling. Arkhangelsk, ASTU Publ., 2002. 112 p. (In Russ.).

Пристова Т.А. Запасы углерода в древесных растениях березово-елового молодняка послерубочного происхождения в условиях средней тайги Республики Коми // Тр. СПбНИИЛХ. 2022. No 1. С. 72–82. Pristova T.A. Carbon Reserves in Woody Plants of Birch-Spruce Young Stock of Post-Harvest Origin of the Middle Taiga of the Komi Republic. Trudy Sankt-Peterburgskogo nauchno-issledovatelskogo instituta lesnogo khozyajstva = Proceedings of the Saint Petersburg Forestry Research Institute, 2022, no. 1, pp. 72–82. (In Russ.). https://doi.org/10.21178/2079-6080.2022.1.72

Смирнов В.В. Органическая масса в некоторых лесных фитоценозах Европейской части СССР. М.: Наука, 1971. 359 с. Smirnov V.V. Organic Mass in Some Forest Phytocenoses of the European Part of the USSR. Moscow, Nauka Publ., 1971. 359 p. (In Russ.).

Усольцев В.А., Парамонов А.А., Третьяков С.В., Коптев С.В., Цепордей И.С. Модель объема ствола ивы: мета-анализ // Изв. вузов. Лесн. журн. 2021. No 3. С. 49–58. Usoltsev V.А., Paramonov А.А., Tretyakov S.V., Koptev S.V., Tsepordey I.S. Generic Model of Willow Stem Volume: A Meta-Analysis. Lesnoy Zhurnal = Russian Forestry Journal, 2021, no. 3, pp. 49–58. (In Russ.). https://doi.org/10.37482/0536-1036-2021-3-49-58

Усольцев В.А., Уразова А.Ф., Борников А.В., Цепордей И.С. Видоспецифичная аллометрия и «всеобщая» модель структуры надземной биомассы рода Prunus L.: мета-анализ // Леса России и хоз-во в них. 2019. No 3 (70). С. 4–15. Usoltsev V.A., Urazova A.F., Bornikov A.V., Tsepordey I.S. Species-Specific Allometry and a Generic Model of the Aboveground Biomass Structure of the Genus Prunus L.: a Meta-Analysis. Lesa Rossii i khozyajstvo v nikh = Forests of Russia and Economy in Them, 2019, no. 3 (70), pp. 4–15. (In Russ.).

Усольцев В.А., Цепордей И.С., Азаренок В.А., Кох Е.В. Всеобщие аллометрические модели фитомассы подлесочных видов: мета-анализ // Вестн. Поволж. гос. технол. ун-та. Сер.: Лес. Экология. Природопользование. 2023. No 1 (57). С. 5–20. Usoltsev V.А., Tsepordey I.S., Azarenok V.A., Kokh E.V. Generic Allometric Models of Understory Species BioMASS: Meta-Analysis. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Les. Ekologiya. Prirodopol’zovanie = Vestnik of Volga State University of Technology. Series: Forest. Ecology. Nature Management, 2023, no. 1 (57), pp. 5–20. (In Russ.). https://doi.org/10.25686/2306-2827.2023.1.5

Усольцев В.А., Цепордей И.С., Парамонов А.А., Третьяков С.В., Коптев С.В., Карабан А.А., Цветков И.В., Давыдов А.В., Часовских В.П. Сравнительный мета-анализ аллометрических моделей биомассы быстрорастущих лиственных пород // Биосфера. 2023. Т. 15, No 1. С. 7–20. Usoltsev V.A., Tsepordey I.S., Paramonov A.A., Tretyakov S.V., Koptev S.V., Karaban A.A., Tsvetkov I.V., Davydov A.V., Chasovskikh V.P. Comparative Meta-Analysis of Allometric Models of Fast-Growing Hardwood Biomass. Biosfera, 2023, vol. 15, no. 1, pp. 7–20. (In Russ.). https://doi.org/10.24855/biosfera.v15i1.789

Усольцев В.А., Цепордей И.С., Часовских В.П. Всеобщие аллометрические модели фитомассы берез (род Betula L.): мета-анализ // Тр. СПбНИИЛХ. 2023. No 4. С. 4–15. Usoltsev V.A., Tsepordey I.S., Chasovskikh V.P. Generic Models of Birch (Genus Betula L.) Tree Biomass: a Meta-Analysis. Trudy Sankt-Peterburgskogo nauchno-issledovatelskogo instituta lesnogo khozyajstva = Proceedings of the Saint Petersburg Forestry Research Institute, 2023, no. 4, pp. 4–15. (In Russ.). https://doi.org/10.21178/2079-6080.2023.4.4

Четыркин Е.М. Статистические методы прогнозирования. М.: Статистика, 1977. 200 с. Chetyrkin E.M. Statistical Methods of Forecasting. Moscow, Statistika Publ., 1977. 200 p. (In Russ.).

Arevalo C.B.M., Volk T.A., Bevilacqua E., Abrahamson L. Development and Validation of Aboveground Biomass Estimations for Four Salix Clones in Central New York. Biomass and Bioenergy, 2007, vol. 31, iss. 1, pp. 1–12. https://doi.org/10.1016/j.biombioe.2006.06.012

Blujdea V.B.N., Pilli R., Dutca I., Ciuvat L., Abrudan I.V. Allometric Biomass Equations for Young Broadleaved Trees in Plantations in Romania. Forest Ecology and Management, 2012, vol. 264, pp. 172–184. https://doi.org/10.1016/j.foreco.2011.09.042

Chave J., Réjou-Méchain M., Búrquez A., Chidumayo E., Colgan M.S., Delitti W.B.C., Duque A., Eid T., Fearnside P.M., Goodman R.C., Henry M., Martínez-Yrízar A., Mugasha W.A., Muller-Landau H.C., Mencuccini M., Nelson B.W., Ngomanda A., Nogueira E.M., Ortiz-Malavassi E., Pélissier R., Ploton P., Ryan C.M., Saldarriaga J.G., Vieilledent G. Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees. Global Change Biology, 2014, vol. 20, iss. 10, pp. 3177–3190. https://doi.org/10.1111/gcb.12629

Chen J., Fang X., Wu A., Xiang W., Lei P., Ouyang S. Allometric Equations for Estimating Biomass of Natural Shrubs and Young Trees of Subtropical Forests. New Forests, 2024, vol. 55, pp.15–46. https://doi.org/10.1007/s11056-023-09963-z

Chojnacky D.C., Heath L.S., Jenkins J.C. Updated Generalized Biomass Equations for North American Tree Species. Forestry, 2014, vol. 87, iss. 1, pp. 129–151. https://doi.org/10.1093/forestry/cpt053

Conti G., Gorné L.D., Zeballos S.R., Lipoma M.L., Gatica G., Kowaljow E., Whitworth-Hulse J.I., Cuchietti A., Poca M., Pestoni S., Fernandes P.M. Developing Allometric Models to Predict the Individual Aboveground Biomass of Shrubs Worldwide. Global Ecology and Biogeography, 2019, vol. 28, iss. 7, pp. 961–975. https://doi.org/10.1111/geb.12907

Dahal B., Poudel K.P., Renninger H.J., Granger J.J., Leininger T.D., Gardiner E.S., Souter R.A., Rousseau R.J. Aboveground Biomass Equations for Black Willow (Salix nigra Marsh.) and Eastern Cottonwood (Populus deltoides Bartr. ex Marsh.). Trees, Forests and People, 2022, vol. 7, art. no. 100195. https://doi.org/10.1016/j.tfp.2022.100195

Jenkins J.C., Chojnacky D.C., Heath L.S., Birdsey R.A. National-Scale Biomass Estimators for United States Tree Species. Forest Science, 2003, vol. 49, iss. 1, pp. 12–35. https://doi.org/10.1093/forestscience/49.1.12

Marchetti M. Forest Biomass for Bioenergy: Opportunities and Constraints for Governance Context. Forest Biomass Conference 2013, 2013, pp. 37–38.

Mleczek M., Rutkowski P., Rissmann I., Kaczmarek Z., Golinski P., Szentner K., Strazyńska K., Stachowiak A. Biomass Productivity and Phytoremediation Potential of Salix alba and Salix viminalis. Biomass and Bioenergy, 2010, vol. 34, iss. 9, pp. 1410–1418. https://doi.org/10.1016/j.biombioe.2010.04.012

Mund M., Kummetz E., Hein M., Bauer G.A., Schulze E.-D. Growth and Carbon Stocks of a Spruce Forest Chronosequence in Central Europe. Forest Ecology and Management, 2002, vol. 171, iss. 3, pp. 275–296. https://doi.org/10.1016/S0378-1127(01)00788-5

Muukkonen Р. Generalized Allometric Volume and Biomass Equations for Some Tree Species in Europe. European Journal of Forest Research, 2007, vol. 126, pp. 157–166. https://doi.org/10.1007/s10342-007-0168-4

Pajtík J., Konôpka B., Šebeň V. Mathematical Biomass Models for Young Individuals of Forest Tree Species in the Region of the Western Carpathians. Zvolen, National Forest Centre – Forest Research Institute Zvolen, 2018. 89 p.

Pastor J., Aber J.D., Melillo J.M. Biomass Prediction Using Generalized Allometric Regressions for Some Northeast Tree Species. Forest Ecology and Management, 1984, vol. 7, iss. 4, pp. 265–274. https://doi.org/10.1016/0378-1127(84)90003-3

Paul K.I., Roxburgh S.H., England J.R., Ritson P., Hobbs T., Brooksbank K., Raison R.J., Larmour J.S., Murphy S., Norris J., Neumann C., Lewis T., Jonson J., Carter J.L., McArthur G., Barton C., Rose B. Development and Testing of Allometric Equations for Estimating Aboveground Biomass of Mixed-Species Environmental Plantings. Forest Ecology and Management, 2013, vol. 310, pp. 483–494. https://doi.org/10.1016/j.foreco.2013.08.054

Perala D.A., Alban D. Allometric Biomass Estimators for Aspen-Dominated Ecosystems in the Upper Great Lakes. Research Paper NC-314. St. Paul, MN, US Department of Agriculture, Forest Service, North Central Forest Experiment Station, 1993. 38 p. https://doi.org/10.2737/NC-RP-314

Ribe J.H. Puckerbrush Weight Tables. Miscellaneous Report 152. Orono, ME, University of Maine, Life Sciences and Agriculture Experiment Station, 1973. 92 p.

Urban D.L., Acevedo M.F., Garman S.L. Scaling Fine-Scale Processes to Large-Scale Patterns Using Models Derived from Models: Meta-Models. Spatial Modeling of Forest Landscape Change: Approaches and Applications, 1999, chapt. 4, pp. 70–98.

Volk T.A., Luzadis V. Willow Biomass Production for Bioenergy, Biofuels and Bioproducts in New York. Renewable Energy from Forest Resources in the United States, 2009, pp. 238–260. https://doi.org/10.4324/9780203888421-22

West G.B., Brown J.H., Enguist B.J. A General Model for the Structure and Allometry of Plant Vascular System. Nature, 1999, vol. 400, pp. 664–667. https://doi.org/10.1038/23251

Wilkinson A.G. Poplars and Willows for Soil Erosion Control in New Zealand. Biomass and Bioenergy, 1999, vol. 16, iss. 4, pp. 263–274. https://doi.org/10.1016/S0961-9534(99)00007-0

Yang T.H., Song K., Da L.J., Li X.P., Wu J.P. The Biomass and AboveGround Net Primary Productivity of Schima superba-Castanopsis carlesii Forests in East China. Science China Life Sciences, 2010, vol. 53, pp. 811–821. https://doi.org/10.1007/s11427-010-4021-5

Young H.E., Ribe J.H., Wainwright K. MR 230: Weight Tables for Tree and Shrub Species in Maine. Life Sciences & Agriculture Experiment Station Miscellaneous Report 230, 1980. 84 p.

Zianis D., Mencuccini M. On Simplifying Allometric Analyses of Forest Biomass. Forest Ecology and Management, 2004, vol. 187, iss. 2–3, pp. 311–332. https://doi.org/10.1016/j.foreco.2003.07.007

Published

2024-10-28

How to Cite

Paramonov А., Usoltsev В., Tretyakov С., Tsvetkov И., and Tsepordey И. “Generic Models of Willow (genus Salix L.) Tree Phytomass: A Meta-Analysis”. Lesnoy Zhurnal (Forestry Journal), no. 5, Oct. 2024, pp. 64-75, doi:10.37482/0536-1036-2024-5-64-75.